![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
This book reviews a variety of methods in computational chemistry and their applications in different fields of current research. Ab initio methods and regression analyses are discussed with special focus on their application to investigate chemical structures as for example dyes or drug compounds. Further topics are the use of computational methods in the modeling of spectroscopic data or to study reaction mechanisms.
Electron Paramagnetic Resonance (EPR) spectroscopy - also sometimes termed Electron Spin Resonance spectroscopy - has manifold potential uses in biochemistry and medicine. The paramount importance of EPR spectroscopy applied to biological tissues and fluids is that it identifies the changes in redox processes that contribute to disease. EPR spectroscopy has come a long way from its original use to detect malignant tumors. For example, the development and later refinement of methods of low-temperature registration of biological tissues widened the scope of EPR spectroscopy. Innovations made possible by the introduction of spin labels, probes, and traps made EPR spectroscopy ever more applicable to biochemistry and medicine, to the point where in vivo studies are being carefully considered. This comprehensive book discusses spectra of many tissues and bodily fluids, and the quantitative nature of paramagnetic centers in both normal individuals and patients suffering from a variety of diseases. Special attention is given to the EPR examination of bio-molecules, such as enzymes, polypeptides, vitamins, lipids, hydrocarbons, etc., which play an essential role in human activity. This book will be of great interest to physicians specializing in many different areas. Similarly, biologists, biochemists, biophysicists, and chemists will find this book very useful. It has also been written so that it may be used as a textbook at graduate level.
Provides an engaging account of how genetic abnormalities, neurobiology and neuropsychology work in concert to manifest cognitive-behavioral dysfunction. The authors have woven the various molecular genetic, genomic, neurophysiological and neurobehavioral threads together into a cohesive fabric of human genes, brain, and behavior. The first section provides and introduction to neurobehavioral disorders and their phenotypes in order to investigate the pathway between genes and behavior. The second section covers autosomal disorders that produce neurobehavioral dysfunction including neurofibromatosis, Prader-Willi syndrome, and tuberous sclerosis among others. The final section considers X-linked disorders in which syndromal and nonsyndromal forms of XLMR are present. It includes the first comprehensive account of the genotype and phenotype in FRAXE, the other fragile X mutation.
This book reviews the most recent developments of fluorescent imaging techniques for medicinal chemistry research and biomedical applications, including cell imaging, in vitro diagnosis and in vivo imaging. Fluorescent imaging techniques play an important role in basic research, drug discovery and clinical translation. They have great impact to many fields including chemical biology, cell biology, medical imaging, cancer diagnosis and treatment, pharmaceutical science, among others, and they have facilitated our understanding of diseases and helped to develop many novel powerful tools for imaging and treatment of diseases. This book will appeal to scientists from numerous fields such as chemistry, pharmaceutical science, biology, materials science, and medicine, and it will serve as a very useful and handy resource for readers with different levels of scientific knowledge, ranging from entry level to professional level.
High Pressure Effects in Molecular Biophysics and Enzymology is designed to acquaint biochemists, biophysicists, and graduate students with advances in the application of high pressure in connection with spectroscopy as a research tool in the study of biomolecules. The 23 chapters written by leading authorities present an overview of current approaches to the use of high pressure in research on enzyme kinetics, protein folding and structure, lipid bilayer structure and organization, lipid-protein interaction, and DNA structure. This important, timely volume is the first devoted exclusively to high-pressure effects in biochemistry and will be the definitive reference in its subject for the next several years.
"Updates fundamentals and applications of all modes of x-ray spectrometry, including total reflection and polarized beam x-ray fluorescence analysis, and synchrotron radiation induced x-ray emission. Promotes the accurate measurement of samples while reducing the scattered background in the x-ray spectrum."
This edited book, based on material presented at the EU Spec Training School on Multiple Scattering Codes and the following MSNano Conference, is divided into two distinct parts. The first part, subtitled "basic knowledge", provides the basics of the multiple scattering description in spectroscopies, enabling readers to understand the physics behind the various multiple scattering codes available for modelling spectroscopies. The second part, "extended knowledge", presents "state- of-the-art" short chapters on specific subjects associated with improving of the actual description of spectroscopies within the multiple scattering formalism, such as inelastic processes, or precise examples of modelling.
This third volume provides comprehensive protocols on pre-analytical, analytical, plasma, and serum proteomics. New and updated chapters are divided into nine sections, detailing blood processing and handling strategies, discovery- and targeted-based mass spectrometry, including workflows to aid in discovery and targeted data analysis, in addition to software and bioinformatics for the plasma proteome. This edition further integrates emerging areas in the development of technologies for plasma proteomics and assay platforms in biomarker discovery and translational proteomics, enrichment and detection strategies to understand the plasma proteome, and peptide, lipid and metabolite targeted assays. We also detail the emerging analysis of extracellular vesicles isolated from plasma. Written in the format of the highly successful Methods in Molecular Biology series, each of the 33 chapters includes an introduction to the topic, lists necessary materials and methods, includes hints and tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Serum/Plasma Proteomics: Methods and Protocols, Third Edition aims to be comprehensive guide for researchers.
Recent years have seen an explosion in the volume of work carried out using supersonic jets of molecules following the discovery that the technique could provide information on structure and dynamics of a very high quality otherwise impossible to obtain. Written and edited by a first class team of authors, acknowledged world leaders in their subjects, this book describes applications in detail along with analysis of data recorded and background theory. Physical chemists and chemical physicists will find this unique book an essential concentrated source of information and reference.
This thesis focuses on understanding the growth and formation mechanism of supermassive black holes (SMBHs), an issue it addresses by investigating the dense interstellar medium that is assumed to be a crucial component of the fuel for SMBHs. The thesis also offers unique guidance on using the Atacama Large Millimeter/submillimeter Array (ALMA) in active galactic nuclei (AGN) research. The author presents the three major findings regarding SMBH formation and growth: (1) The development of a new diagnostic method for the energy sources in galaxies based on submillimeter spectroscopy, which allows identification of accreting SMBHs even in obscured environments, (2) the discovery that the circumnuclear dense gas disk (CND), with a typical size of a few tens of parsecs, which plays a crucial role in governing the growth of SMBHs, and (3) the discovery that the mass transfer budget from the CND to the central SMBHs can be quantitatively understood with a theoretical model incorporating the circumnuclear starburst as a driver of mass transfer. The thesis skillfully reviews these three findings, which have greatly improved our understanding of the growth mechanism of SMBHs.
Infrared and Raman Spectroscopy of Biological Materials facilitates a comprehensive and through understanding of the latest developments in vibrational spectroscopy. It contains explains key breakthroughs in the methodologies and techniques for infrared, near-infrared, and Raman spectroscopy. Topics include qualitative and quantitative analysis, biomedical applications, vibrational studies of enzymatic catalysis, and chemometrics.
"Volume 40 presents an authoritative selection of the best and most up-to-date research findings in separation science. Surveys recent developments in high performance-liquid (HPLC), reversed-phase liquid (RPLC), countercurrent (CCC), and micellar electrokinetic chromatography (MEKC)."
Addressing the need for an up-to-date reference on silicon devices and heterostructures, Beyond the Desert 99 reviews the technology used to grow and characterize Goup IV alloy films. It covers the theory, device design, and simulation of heterojunction transistors, emphasizing their relevance in developing the technologies involving strained layers; device design and simulation of conventional silicon bipolar transistors and SiGe HBTs at room and low temperatures; and device design and simulation for MOSFETs, including SiGe and strained-Si channel MOSFETs. The book concludes with simulations and examples of different applications. It provides a unified reference for scientists and engineers investigating the use of SiGe and strained silicon in a new generation of high-speed circuit applications.
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
This volume details aspects and applications of interfacing capillary electrophoresis (CE) with mass spectrometry (MS). Chapters guide readers through approaches based on different types of CE-MS interfaces such as (nano)sheath liquid, porous tip, and liquid junction, as well as various capillary coatings, and a broad range of applications including several top-down and bottom-up proteomic approaches. Additionally, a list of analyte targets was provided consisting of amphetamines, antibiotics, carbohydrates (including glycosaminoglycans and glycopeptides), enantiomers, extracellular matrix metabolites, monoclonal antibodies, and nanoparticles, and therefore covers numerous fields of applications such as pharmaceutical, biomedical, food, agrochemical, and environmental analysis. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Capillary Electrophoresis-Mass Spectrometry: Methods and Protocols aims to provide highly valuable information for both beginners and experts in the field be it students, technical staff, and scientists.
An explanation of proven methods of chemical analysis, focusing on the myriad applications of solid phase microextraction (SPME) to laboratories performing high-sample throughput, quick sample turnaround time, low detection levels, and dirty sample matrices. It supplies commentary on developments in SPME technology from its inventor, Janusz Pawliszyn.
Synchrotron radiation is today extensively used for fundamental and applied research in many different fields of science. Its exceptional characteristics in terms of intensity, brilliance, spectral range, time structure and now also coherence pushed many experimental techniques to previously un-reachable limits, enabling the performance of experiments unbelievable only few years ago. The book gives an up-to-date overview of synchrotron radiation research today with a view to the future, starting from its generation and sources, its interaction with matter, illustrating the main experimental technique employed and provides an overview of the main fields of research in which new and innovative results are obtained. The book is addressed to PhD students and young researchers to provide both an introductory and a rather deep knowledge of the field. It will also be helpful to experienced researcher who want to approach the field in a professional way.
Nowadays, there are increasing demands for the control and
specification of all aspects of industrial manufacturing. There is
also a growing need to understand various biological processes and
conditions for agricultural production, and concern for protection
of the environment and human health. These factors have made it
imperative to develop adequate methods for the analysis of gaseous
substances or substances that can be converted to the gaseous
state. It is not only necessary to apply known and developed
methods correctly, but novel analytical procedures must also be
found. Instrumentation should be improved and the applications of
these methods will have to be extended.
Application of NMR and Molecular Docking in Structure-Based Drug Discovery, by Jaime L. Stark and Robert Powers NMR as a Unique Tool in Assessment and Complex Determination of Weak Protein-Protein Interactions, by Olga Vinogradova and Jun Qin The Use of Residual Dipolar Coupling in Studying Proteins by NMR, by Kang Chen und Nico Tjandra NMR Studies of Metalloproteins, by Hongyan Li and Hongzhe Sun Recent Developments in 15N NMR Relaxation Studies that Probe Protein Backbone Dynamics, by Rieko Ishima Contemporary Methods in Structure Determination of Membrane Proteins by Solution NMR, by Tabussom Qureshi and Natalie K. Goto Protein Structure Determination by Solid-State NMR, by Xin Zhao Dynamic Nuclear Polarization: New Methodology and Applications, by Kong Hung Sze, Qinglin Wu, Ho Sum Tse and Guang Zhu
This book describes a simple yet innovative method for performing Raman spectroscopy of samples submerged under liquid nitrogen. While Raman spectroscopy has proven to be a powerful tool for the characterization of the structure of matter in the gaseous, liquid, and solid phases, one major difficulty in its application has been laser damage to the material under investigation, especially for biological samples. This book demonstrates how immersion of the sample in liquid nitrogen protects the sample from thermal degradation and oxidation at high incident laser power and allows improvements in sensitivity and spectral resolution over room-temperature Raman spectroscopy, leading to the so-called RUN (Raman Spectroscopy Under liquid Nitrogen) technique. Cooling to liquid nitrogen temperature also allows the selection of the lowest energy molecular conformation for molecules which may have many low energy conformers. In addition, the presence of liquid nitrogen over a roughened surface improves the sensitivity of Surface Enhanced Raman Spectroscopy (SERS), enabling the closely related SERSUN (Surface-Enhanced Raman Spectroscopy Under liquid Nitrogen) technique. This book starts with the theoretical and experimental basics of Raman and polarized Raman spectroscopy, before moving on to detailed descriptions of RUN and SERSUN. Room temperature and RUN spectra are provided for over fifty molecules.
Proceedings of the 13th International Conference on Hyperfine Interactions and 17th International Symposium on Nuclear Quadrupole Interactions, HFI/NQI 2004, held in Bonn, Germany, 22-27 August, 2004. Researchers and graduate students interested in hyperfine
interaction detected by nuclear radiation as well as nuclear
quadrupole interactions detected by resonance methods in the areas
of materials, biological and medical science will find this volume
indispensable. New and original scientific results along with
recent developments in instrumentation and methods will be
communicated in invited and contributed papers.
This book explores the fundamental and practical aspects of supercritical fluid chromatography (SFC) and extraction. It discusses packed columns in SFC; detection in SFC; supercritical fluid chromatography/mass spectroscopy; and evaporative light scattering detection in SFC.
This biography gives an insider view of 20th century German science in the making. The discovery by Max von Laue in 1912 of interference effects demonstrated the wave-like nature of X-rays and the atomic lattice structure of crystals. This major advance for research on solids earned him the Nobel Prize two years later, the ultimate acclaim as an exceptional theoretician. As an early supporter of Einstein's relativity theory, he published fundamental papers on light scattering as well as on matter waves and superconductivity. Laue may be counted among the few persons of influence in Germany who - as Einstein put it - managed to "stay morally upright" under Nazism. It is thus surprising that this is the first extensive biography of this famous scientist. Jost Lemmerich could hardly have been better equipped to describe German physics and physicists in the 1920s. His copiously illustrated historical account is based as much on scientific material as on private correspondence, creating a fascinating and convincingly detailed portrait.
SELDI is distinct from other TOF-MS technologies in that it couples features of chromatography and mass spectrometry, facilitating analyte enrichment and sample cleanup on an array surface. In the growing field of proteomics, SELDI technology has been widely used for biomarker discovery and characterization in diverse applications including diagnostics, drug development, and basic research. SELDI-based biomarker studies can typically be divided into four phases: discovery, validation, purification and identification, and assay development. SELDI-TOF Mass Spectrometry: Methods and Protocols provides an overview of the current applications of SELDI-TOF MS (surface enhanced laser desorption/ionization time-of-flight mass spectrometry), with an emphasis on study and experimental design, data analysis and interpretation, and assay development. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, SELDI-TOF Mass Spectrometry: Methods and Protocols will provide information on optimizing study design, experimental protocols, and data analysis and interpretation to yield robust biomarkers and biomarker assays, using examples from different disease areas. |
![]() ![]() You may like...
Can We Still Afford Human Rights…
Jan Wouters, Koen Lemmens, …
Hardcover
R4,107
Discovery Miles 41 070
Brexitland - Identity, Diversity and the…
Maria Sobolewska, Robert Ford
Hardcover
R2,597
Discovery Miles 25 970
Who Gets In And Why - Race, Class And…
Jonathan Jansen, Samantha Kriger
Paperback
Light From the East [microform…
Robert Cornell 1876-1929 Armstrong
Hardcover
R992
Discovery Miles 9 920
|