![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry
Selecting illustrative examples from the recent literature, this reference studies the underlying principles and physics of a wide range of spectroscopic techniques utilized in the pharmaceutical sciences and demonstrates various applications for each method analyzed in the text-showing how knowledge of the mechanisms of spectroscopic phenomena may facilitate more advanced technologies in the field.
This book provides in-depth knowledge about the fabrications, structures, properties and applications of three outstanding electrochemically engineered nanoporous materials including porous silicon, nanoporous alumina and nanotubular titania. The book integrates three major themes describing these materials. The first theme is on porous silicon reviewing the methods for preparation by electrochemical etching, properties and methods for surface functionalization relevant for biosensing applications. Biomedical applications of porous silicon are major focus, described in several chapters reviewing recent developments on bioanalysis, emerging capture probes and drug delivery. The second theme on nanoporous alumina starts with describing the concept of self-organized electrochemical process used for synthesis nanopore and nanotube structures of valve metal oxides and reviewing recent development and progress on this field. The following chapters are focused mainly on optical properties and biosensing application of nanoporous alumina providing the reader with the depth of understanding of the structure controlled optical and photonic properties and design of optical biosensing devices using different detection principles such as photoluminescence, surface plasmon resonance, reflective spectrometry, wave guiding, Raman scattering etc. The third theme is focused on nanotubular titania reviewing three key applications including photocatalysis, solar cells and drug delivery. The book represents an important resource for academics, researchers, industry professionals, post-graduate and high-level undergraduate students providing them with both an overview of the current state-of-the-art on these materials and their future developments.
This lecture notesbook presents how enhanced structural information of biomolecular ionscan be obtainedfrom interaction with photons of specific frequency - laser light. The methods described in the book ""Laser photodissociation and spectroscopy of mass-separated biomolecular ions"" make use of the fact that the discrete energy and fast time scale of "photoexcitation "can provide more control in ion activation. This activation is the crucial process producing structure-informative product ions that cannot be generated with more conventional heating methods, such as collisional activation. The book describes how the powerful separation capabilities and sensitivity of mass spectrometry (MS) can be combined with the structural insights from spectroscopy by measuring vibrational and electronic spectra of trapped analytes. The implementation of laser-based "photodissociation "techniques in MS requires basic knowledge of tunable light sources and ion trapping devices. This book introduces the reader to key concepts and approaches in molecular spectroscopy, and the light sources and ion traps employed in such experiments. The power of the methods is demonstrated by spectroscopic interrogation of a range of important biomolecular systems, including "peptides," "proteins," and "saccharides," with laser light in the ultraviolet-visible, and infrared range. The book ""Laser photodissociation and spectroscopy of mass-separated biomolecular ions"" isan indispensable resource for students and researchers engaged or interestedin this emerging field. It provides the solid background of key concepts and technologies for the measurements, discusses state-of-the-art experiments, and provides an outlook on future developments and applications."
Considers three fundamental aspects of molecular interactions important in chromatography, taking care not to duplicate information readily available in other references. Surveys the basic factors involved in complex formation, which governs the retention mechanism and selectivity in either donor or
Protein NMR Spectroscopy combines a comprehensive theoretical
treatment of NMR spectroscopy with an extensive exposition of the
experimental techniques applicable to proteins and other biological
macromolecules in solution. Beginning with simple theoretical
models and experimental techniques, Protein NMR Spectroscopy
develops the complete repertoire of theoretical principles and
experimental techniques necessary for understanding and
implementing the most sophisticated NMR experiments.
Laser spectroscopy has been perfected over the last fifteen years to become a precise tool for the investigation of highly vibrationally excited molecules. Intense infrared laser radiation permits both the multiple-photon resonant excitation and the dissociation of polyatomic molecules. In this book, the latest results of some of the foremost Soviet researchers are published for the first time in the West. Laser Spectroscopy of Highly Vibrationally Excited Molecules contains a comprehensive study of both the experimental and theoretical aspects of the basic photophysical interactions that occur in these processes. The book first focuses on the nonlinear interaction between the resonant vibrational mode and the intense infrared field and then examines the nonlinear interaction between the vibrational modes themselves due to anharmonicity. These interrelated processes determine all the characteristics of polyatomic molecules in an infrared field. The book also discusses related phenomena such as spectra broadening, optical resonance, photon echoes, and dynamical chaos. It includes examples of multiple-photon resonant excitation such as the excitation of OsO4 by CO^O2 laser radiation, which is detected by the visible luminescence that results. This book will be of great interest to researchers and postgraduate students in infrared laser spectroscopy and the laser chemistry of molecules and applications of isotope separation.
Remarkable developments in the spectroscopy field regarding ultrashort pulse generation have led to the possibility of producing light pulses ranging from 50 to5 fs and frequency tunable from the near infrared to the ultraviolet range. Such pulses enable us to follow the coupling of vibrational motion to the electronic transitions in molecules and solids in real time. Detailing these advanced developments, as well as the fundamental methods and tools of vibrational spectroscopy, Coherent Vibrational Dynamics providesresearchers and students with a uniquely comprehensive resource. With the contributions of pioneering scientists, this seminal volume - * Outlines the principles and tools used on time-domain vibrational spectroscopy and provides a general introduction to the subject of coherent phonons * Describes the modern methods for tunable ultrashort pulse generation from infrared to visible-UV * Reviews coherent vibrational dynamics in small molecules in liquids (hydrogen bonds), and in carbon based conjugated materials (polyenes, carotenoids, and semiconducting polymers) * Explores phonon dynamics in semiconductors (bulk and heterostructures) and in quasi-one-dimensional systems Supplemented with a great number of references, and covering fundamental as well advanced topics, this text provides a valuable reference for both graduate students and senior researchers investigating materials in physics, chemistry, and biology. It is also an excellent starting point for those who want to pursue research in the field of ultrafast optics and spectroscopy.
Second Edition provides up-to-the-minute discussions on the application of mass spectrometry to the biological sciences. Shows how and why experiments are performed and furnishes details to facilitate duplication of results.
The Ion Exchange and Solvent Extraction series treats ion exchange and solvent extraction both as discrete topics and as a unified, multidisciplinary study - presenting new insights for researchers in many chemical and related field. Containing current knowledge and results in ion exchange, this text: presents an overview of the chemical thermodynamics of cation-exchange reactions, with particular emphasis placed on liquid-phase- and solid-phase-activity coefficient models; describes the development of surface complexation theory and its application to the ion exchange phenomenon; discusses metal-natural colloid surface reactions and their consideration by surface complexation modelling complements; and covers the influence of humic substances on the uptake of metal ions by naturally occurring materials.
Stimulated by the increasing importance of chiral molecules as pharmaceuticals and the need for enantiomerically pure drugs, techniques in chiral chemistry have been expanded and refined, especially in the areas of chromatography, asymmetric synthesis, and spectroscopic methods for chiral molecule structural characterization. In addition to synthetic chiral molecules, naturally occurring molecules, which are invariably chiral and generally enantiomerically enriched, are of potential interest as leads for new drugs. VCD Spectroscopy for Organic Chemists discusses the applications of vibrational circular dichroism (VCD) spectroscopy to the structural characterization of chiral organic molecules. The book provides all of the information about VCD spectroscopy that an organic chemist needs in order to make use of the technique. The authors, experts responsible for much of the existing literature in this field, discuss the experimental measurement of VCD and the theoretical prediction of VCD. In addition, they evaluate the advantages and limitations of the technique in determining molecular structure. Given the availability of commercial VCD instrumentation and quantum chemistry software, it became possible in the late 1990s for chemists to use VCD in elucidating the stereochemistries of chiral organic molecules. This book helps organic chemists become more aware of the utility of VCD spectroscopy and provides them with sufficient knowledge to incorporate the technique into their own research.
A teaching tool intended to complement existing books on the theory of materials science, metallurgy, and electron microscopy, this text focuses on metals and alloys. It visualizes key structural elements common to crystalline materials, including crystal lattice imperfections, along with the principles and steps involved in the microstructure development in metallic materials under external influences. Designed as an atlas, Microstructure of Metals and Alloys contains a collection of carefully selected original transmission electron microscope (TEM) micrographs taken by the authors. These images demonstrate typical crystal lattice defects, elements of the microstructure of metals and alloys, and the basic processes occurring to the crystal structure during plastic deformation, polygonization, recrystallization, and rapid solidification. The book is organized into six chapters. Each deals with a particular problem in the field of physical metallurgy, and begins with a description of the basic concept and terms. These descriptions enable readers to achieve a better understanding of the essential issues relevant to specific challenges. Providing comprehensive, illustrative coverage of the basic topics in materials science, this important work emphasizes fundamental principles over specific materials, in a manner that is fully consistent with the contemporary tendency in materials science teaching.
This book presents the latest developments in Femtosecond Chemistry and Physics for the study of ultrafast photo-induced molecular processes. Molecular systems, from the simplest H2 molecule to polymers or biological macromolecules, constitute central objects of interest for Physics, Chemistry and Biology, and despite the broad range of phenomena that they exhibit, they share some common behaviors. One of the most significant of those is that many of the processes involving chemical transformation (nuclear reorganization, bond breaking, bond making) take place in an extraordinarily short time, in or around the femtosecond temporal scale (1 fs = 10-15 s). A number of experimental approaches - very particularly the developments in the generation and manipulation of ultrashort laser pulses - coupled with theoretical progress, provide the ultrafast scientist with powerful tools to understand matter and its interaction with light, at this spatial and temporal scale. This book is an attempt to reunite some of the state-of-the-art research that is being carried out in the field of ultrafast molecular science, from theoretical developments, through new phenomena induced by intense laser fields, to the latest techniques applied to the study of molecular dynamics.
Optical Spectroscopy of Lanthanides: Magnetic and Hyperfine Interactions represents the sixth and final book by the late Brian Wybourne, an accomplished pioneer in the spectroscopy of rare earth ions, and Lidia Smentek, a leading theoretical physicist in the field. The book provides a definitive and up-to-date theoretical description of spectroscopic properties of lanthanides doped in various materials. The book integrates computer-assisted calculations developed since Wybourne's classic publication on the topic. It contains useful Maple (TM) routines, discussions, and new aspects of the theory of f-electron systems. Establishing a unified basis for understanding state-of-the-art applications and techniques used in the field, the book reviews fundamentals based on Wybourne's graduate lectures, which include the theory of nuclei, the theory of angular momentum, Racah algebra, and effective tensor operators. It then describes magnetic and hyperfine interactions and their impact on the energy structure and transition amplitudes of the lanthanide ions. The text culminates with a relativistic description of f f electric and magnetic dipole transitions, covering sensitized luminescence and a new parametrization scheme of f-spectra. Optical Spectroscopy of Lanthanides enables scientists to construct accurate and reliable theoretical models to elucidate lanthanides and their properties. This text is ideal for exploring a range of lanthanide applications including electronic data storage, lasers, superconductors, medicine, nuclear engineering, and nanomaterials.
Shows how to choose the most effective techniques for assessing the toxicity of chemicals in both food and the environment. examines a wide range of volatile compounds from toxic aldehydes and pesticides to micotoxins and dioxins.
This detailed handbook covers different chromatographic analysis techniques and chromatographic data for compounds found in air, water, and soil, and sludge. The new edition outlines developments relevant to environmental analysis, especially when using chromatographic mass spectrometric techniques. It addresses new issues, new lines of discussion, and new findings, and develops in greater detail the aspects related to chromatographic analysis in the environment. It also includes different analytical methodologies, addresses instrumental aspects, and outlines conclusions and perspectives for the future.
This book details chiroptical spectroscopic methods: electronic circular dichroism (ECD), optical rotatory dispersion (ORD), vibrational circular dichroism (VCD), and vibrational Raman optical activity (VROA). For each technique, the text presents experimental methods for measurements and theoretical methods for analyzing the experimental data. It also includes a set of experiments that can be adopted for undergraduate teaching laboratories. Each chapter is written in an easy-to-follow format for novice readers, with necessary theoretical formalism in appendices for advanced readers.
Thin layer chromatography (TLC) is well suited for performing enantioseparations for research as well as larger-scale applications. A fast, inexpensive, and versatile separation technique, there are many practical considerations that contribute to its effectiveness. Thin Layer Chromatography in Chiral Separations and Analysis is the first book to focus solely on the theory, capabilities, and applications of TLC for direct and indirect enantioseparations. The first part of the book examines the fundamental principles of chirality and TLC. It describes the necessary materials, laboratory equipment, procedures, and strategies for the separation, quantification, isolation, and analysis of chiral compounds. The second part evaluates the real-world enantioseparations and densitometric analyses. Emphasizing pharmaceutical applications, the book discusses chiral separation mechanisms and methods for analyzing the chiral purity of diastereoisomers, amino acids, beta-blockers, and NSAIDS. Topics also include commercial stationary phases and chiral modifiers of mobile phases. Thin Layer Chromatography in Chiral Separations and Analysis presents a unified perspective of theory and experimental details underlying the collective developments in the field. The book offers scientists in a variety of disciplines and levels of expertise a complete guide to understanding the current and potential applications of chiral TLC.
This book is devoted to the synthetic and physical chemistry of aromatic thiols and their closest derivatives, sulfides, sulfoxides, sulfones, including those substituted by various functional groups such as acyl and thioacyl, alkoxide, ester, hydroxyl and halogens. In some cases, for comparison, selenium and oxygen analogues are also detailed. The main focus of the book is on synthetic methods, both traditional and new, based on the use of transition metals as catalysts, as well as the reactivity of the compounds obtained. Its addition to the influence of conformational and electronic factors on spectral (NMR, IR, UV, NQR) and electrochemical characteristics of the compounds is presented. Finally, the book describes the application of aromatic thiols and their derivatives as drug precursors, high-tech materials, building blocks for organic synthesis, analytical reagents and additives for oils and fuels. It is a useful handbook for all those interested in organosulfur chemistry.
This book provides the first complete and up-to-date summary of the state of the art in HAXPES and motivates readers to harness its powerful capabilities in their own research. The chapters are written by experts. They include historical work, modern instrumentation, theory and applications. This book spans from physics to chemistry and materials science and engineering. In consideration of the rapid development of the technique, several chapters include highlights illustrating future opportunities as well.
Electron microscopy is now a mainstay characterization tool for solid state physicists and chemists as well as materials scientists. Containing the proceedings from the Electron Microscopy and Analysis Group (EMAG) conference in September 2003, this volume covers current developments in the field, primarily in the UK. These conferences are biennial events organized by the EMAG of the Institute of Physics to provide a forum for discussion of the latest developments in instrumentation, techniques, and applications of electron and scanning probe microscopies.
This book discusses the development of Fano-based techniques and reveals the characteristic properties of various wave processes by studying interference phenomena. It explains that the interaction of discrete (localized) states with a continuum of propagation modes leads to Fano interference effects in transmission, and explores novel coherent effects such as bound states in the continuum accompanied by collapse of Fano resonance. Originating in atomic physics, Fano resonances have become one of the most appealing phenomena of wave scattering in optics, microwaves, and terahertz techniques. The generation of extremely strong and confined fields at a deep subwavelength scale, far beyond the diffraction limit, plays a central role in modern plasmonics, magnonics, and in photonic and metamaterial structures. Fano resonance effects take advantage of the coupling of these bound states with a continuum of radiative electromagnetic waves. With their unique physical properties and unusual combination of classical and quantum structures, Fano resonances have an application potential in a wide range of fields, from telecommunication to ultrasensitive biosensing, medical instrumentation and data storage. Including contributions by international experts and covering the essential aspects of Fano-resonance effects, including theory, modeling and design, proven and potential applications in practical devices, fabrication, characterization and measurement, this book enables readers to acquire the multifaceted understanding required for these multidisciplinary challenges.
This book describes the separation mechanism of proteins in ion-exchange chromatography (IEC) by stressing the unique characteristics of IEC of proteins. It helps reader to acquire or improve the technique of IEC of proteins without calling for a deep understanding of the mathematics.
Spectroscopic Techniques and Hindered Molecular Motion presents a united, theoretical approach to studying classical local thermal motion of small molecules and molecular fragments in crystals by spectroscopic techniques. Mono- and polycrystalline case studies demonstrate performance validity. The book focuses on small molecules and molecular fragments, such as N2, HCl, CO2, CH4, H2O, NH4, BeF4, NH3, CH2, CH3, C6H6, SF6, and other symmetrical atomic formations, which exhibit local hindered motion in molecular condensed media: molecular and ionic crystals, molecular liquids, liquid crystals, polymeric solids, and biological objects. It reviews the state of studying the hindered molecular motion (HMM) phenomenon and the experimental works on the basis of the latest theoretical research. Case Studies Physical models of hindered molecular motion General solution of the stochastic problem for the hindered molecular motion in crystals Formulae of the angular autocorrelation function symmetrized on the crystallographic point symmetry groups Formulae of the spectral line shapes concerning the dielectric, infrared, Raman, nuclear magnetic relaxation, and neutron scattering spectroscopy in the presence of the hindered molecular motion Experimental probation of the theoretical outcomes Proton relaxation in three-atomic molecular fragments undergoing axial symmetry hindered motion Structural distortion in the ordered phase of crystalline ammonium chloride Organic compounds, polymers, pharmaceutical products, and biological systems consist of the molecular fragments, which possess rotational or conformational degrees of freedom or an atomic exchange within the fragme
Covers the Fundamentals of Chiral Separation, Available Chiral Selectors, and Numerous Applications of Chiral Separation by Capillary Electrophoresis Since the 1980s, modern analytical tools have enabled capillary electrophoresis to become a standard part of the chemist's toolkit. With contributions from international experts, Chiral Separations by Capillary Electrophoresis provides a general overview of the principles of chiral separation by capillary electrophoresis and the different chiral selectors available. The book discusses the most important as well as several new chiral selectors used in capillary electrophoresis. It reviews recent pharmaceutical and biomedical applications and explores novel techniques, such as capillary electrophoresis coupled to mass spectrometry and microchip technology. The book also examines the quantitative aspects of capillary electrophoresis, the possibilities of capillary electrochromatography, and the various chiral columns available. Capillary electrophoresis has proven to be an effective tool for chiral separation. This book explains how this technique can be used in the separation of molecules, offering insight into both existing and emerging applications.
Scanning transmission electron microscopy has become a mainstream technique for imaging and analysis at atomic resolution and sensitivity, and the authors of this book are widely credited with bringing the field to its present popularity. Scanning Transmission Electron Microscopy(STEM): Imaging and Analysis will provide a comprehensive explanation of the theory and practice of STEM from introductory to advanced levels, covering the instrument, image formation and scattering theory, and definition and measurement of resolution for both imaging and analysis. The authors will present examples of the use of combined imaging and spectroscopy for solving materials problems in a variety of fields, including condensed matter physics, materials science, catalysis, biology, and nanoscience. Therefore this will be a comprehensive reference for those working in applied fields wishing to use the technique, for graduate students learning microscopy for the first time, and for specialists in other fields of microscopy. |
You may like...
|