Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry
This updated and revised edition of a classic work provides a summary of methods for numerical computation of high resolution conventional and scanning transmission electron microscope images. At the limits of resolution, image artifacts due to the instrument and the specimen interaction can complicate image interpretation. Image calculations can help the user to interpret and understand high resolution information in recorded electron micrographs. The book contains expanded sections on aberration correction, including a detailed discussion of higher order (multipole) aberrations and their effect on high resolution imaging, new imaging modes such as ABF (annular bright field), and the latest developments in parallel processing using GPUs (graphic processing units), as well as updated references. Beginning and experienced users at the advanced undergraduate or graduate level will find the book to be a unique and essential guide to the theory and methods of computation in electron microscopy.
Synchrotron radiation has been a revolutionary and invaluable research tool for a wide range of scientists, including chemists, biologists, physicists, materials scientists, geophysicists. It has also found multidisciplinary applications with problems ranging from archeology through cultural heritage to paleontology. The subject of this book is x-ray spectroscopy using synchrotron radiation, and the target audience is both current and potential users of synchrotron facilities. The first half of the book introduces readers to the fundamentals of storage ring operations, the qualities of the synchrotron radiation produced, the x-ray optics required to transport this radiation, and the detectors used for measurements. The second half of the book describes the important spectroscopic techniques that use synchrotron x-rays, including chapters on x-ray absorption, x-ray fluorescence, resonant and non-resonant inelastic x-ray scattering, nuclear spectroscopies, and x-ray photoemission. A final chapter surveys the exciting developments of free electron laser sources, which promise a second revolution in x-ray science. Thanks to the detailed descriptions in the book, prospective users will be able to quickly begin working with these techniques. Experienced users will find useful summaries, key equations, and exhaustive references to key papers in the field, as well as outlines of the historical developments in the field. Along with plentiful illustrations, this work includes access to supplemental Mathematica notebooks, which can be used for some of the more complex calculations and as a teaching aid. This book should appeal to graduate students, postdoctoral researchers, and senior scientists alike.
This book provides a fresh, photon-based description of modern molecular spectroscopy and photophysics, with applications drawn from chemistry, biology, physics and materials science.
This thesis extends our understanding of systems of independent electrons by developing a generalization of Bloch's Theorem which is applicable whenever translational symmetry is broken solely due to arbitrary boundary conditions. The thesis begins with a historical overview of topological condensed matter physics, placing the work in context, before introducing the generalized form of Bloch's Theorem. A cornerstone of electronic band structure and transport theory in crystalline matter, Bloch's Theorem is generalized via a reformulation of the diagonalization problem in terms of corner-modified block-Toeplitz matrices and, physically, by allowing the crystal momentum to take complex values. This formulation provides exact expressions for all the energy eigenvalues and eigenstates of the single-particle Hamiltonian. By precisely capturing the interplay between bulk and boundary properties, this affords an exact analysis of several prototypical models relevant to symmetry-protected topological phases of matter, including a characterization of zero-energy localized boundary excitations in both topological insulators and superconductors. Notably, in combination with suitable matrix factorization techniques, the generalized Bloch Hamiltonian is also shown to provide a natural starting point for a unified derivation of bulk-boundary correspondence for all symmetry classes in one dimension.
Solid-State NMR Characterization of Heterogeneous Catalysts and Catalytic Reactions provides a comprehensive account of state-of-the-art solid-state NMR techniques and the application of these techniques in heterogeneous catalysts and related catalytic reactions. It includes an introduction to the basic theory of solid-state NMR and various frequently used techniques. Special emphasis is placed on characterizing the framework and pore structure, active site, guest-host interaction, and synthesis mechanisms of heterogeneous catalysts using multinuclear one- and two-dimensional solid-sate NMR spectroscopy. Additionally, various in-situ solid-state NMR techniques and their applications in investigation of the mechanism of industrially important catalytic reactions are also discussed. Both the fundamentals and the latest research results are covered, making the book suitable as a reference guide for both experienced researchers in and newcomers to this field. Feng Deng is a Professor at Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences.
Unlike traditional NMR textbooks for chemists, this fresh look at the topic combines theory, technology and application in a wide range of fields, targeting biochemists, medicinal chemists, and structural biologists, as well as organic chemists. The text has been developed from a one-semester graduate-level course taught by the authors at the University of Zurich, and offers numerous intuitive illustrations, training exercises and plain-language explanations of complex theory. Divided into four major parts, the first introduces the theory, providing a profound understanding of why experiments work, without a rigorous mathematical treatment of all the physico-chemical computations and deliberately shorter than in most other NMR textbooks. Part two discusses current instrumentation and practical aspects, including sample preparation, processing of raw data and the use of databases, while the third part focuses on the main application of NMR, with examples and training spectra taken from a wide range of synthetic and natural compounds. Part four introduces a selection of modern NMR applications in chemistry, biochemistry, medicinal chemistry and molecular biology, explaining the protocols used and how to interpret the results. With its focus on practical aspects and applications, this text will prove useful long after leaving college, by helping users to select experimental methods and in setting up and running their own NMR experiments.
This book reports on the development and application of a new uniaxial pressure apparatus that is currently generating considerable interest in the field of materials physics. The author provides practical guidelines for performing such experiments, backed up by finite element simulations. Subsequently, the book reports on two uses of the device. In the first, high pressures are used to tune to a Van Hove singularity in Sr2RuO4, while the effects on the unconventional superconductivity and the normal state properties are investigated. In the second experiment, precise and continuous strain control is used to probe symmetry breaking and novel phase formation in the vicinity of a quantum critical point in Sr3Ru2O7.
This book provides knowledge of the basic theory, spectral analysis methods, chemometrics, instrumentation, and applications of near-infrared (NIR) spectroscopy-not as a handbook but rather as a sourcebook of NIR spectroscopy. Thus, some emphasis is placed on the description of basic knowledge that is important in learning and using NIR spectroscopy. The book also deals with applications for a variety of research fields that are very useful for a wide range of readers from graduate students to scientists and engineers in both academia and industry. For readers who are novices in NIR spectroscopy, this book provides a good introduction, and for those who already are familiar with the field it affords an excellent means of strengthening their knowledge about NIR spectroscopy and keeping abreast of recent developments.
This book highlights the power and elegance of algebraic methods of solving problems in quantum mechanics. It shows that symmetries not only provide elegant solutions to problems that can be solved exactly, but also substantially simplify problems that must be solved approximately. Furthermore, the book provides an elementary exposition of quantum electrodynamics and its application to low-energy physics, along with a thorough analysis of the role of relativistic, magnetic, and quantum electrodynamic effects in atomic spectroscopy. Included are essential derivations made clear through detailed, transparent calculations. The book's commitment to deriving advanced results with elementary techniques, as well as its inclusion of exercises will enamor it to advanced undergraduate and graduate students.
This book presents recent advances in the design, fabrication and implementation of flexible printed sensors. It explores a range of materials for developing the electrode and substrate parts of the sensors, on the basis of their electrical and mechanical characteristics. The sensors were processed using laser cutting and 3D printing techniques, and the sensors developed were employed in a number of healthcare, environmental and industrial applications, including: monitoring of physiological movements, respiration, salinity and nitrate measurement, and tactile sensing. The type of sensor selected for each application depended on its dimensions, robustness and sensitivity. The sensors fabricated were also embedded in an IoT-based system, allowing them to be integrated into real-time applications.
This monograph deals with theoretical aspects and numerical simulations of the interaction of electromagnetic fields with nonlinear materials. It focuses in particular on media with nonlinear polarization properties. It addresses the direct problem of nonlinear Electrodynamics, that is to understand the nonlinear behavior in the induced polarization and to analyze or even to control its impact on the propagation of electromagnetic fields in the matter. The book gives a comprehensive presentation of the results obtained by the authors during the last decade and put those findings in a broader, unified context and extends them in several directions.It is divided into eight chapters and three appendices. Chapter 1 starts from the Maxwell's equations and develops a wave propagation theory in plate-like media with nonlinear polarizability. In chapter 2 a theoretical framework in terms of weak solutions is given in order to prove the existence and uniqueness of a solution of the semilinear boundary-value problem derived in the first chapter. Chapter 3 presents a different approach to the solvability theory of the reduced frequency-domain model. Here the boundary-value problem is reduced to finding solutions of a system of one-dimensional nonlinear Hammerstein integral equations. Chapter 4 describes an approach to the spectral analysis of the linearized system of integral equations. Chapters 5 and 6 are devoted to the numerical approximation of the solutions of the corresponding mathematical models. Chapter 7 contains detailed descriptions, discussions and evaluations of the numerical experiments. Finally, chapter 8 gives a summary of the results and an outlook for future work.
This volume presents methods used for the analysis of glycoproteins at different levels-intact, subunit, glycopeptide, and monosaccharide--, and discusses and solves most analytical challenges that a scientist working on glycoproteins may come across. The chapters in this book cover topics such as the role of glycosylation on the properties of therapeutic glycoproteins; different analytical methods to characterize glycosylation, from the intact proteins to the glycan level, for both N-linked and O-linked glycoproteins; mass spectrometry imaging methodology for glycosylation analysis in tissues; approaches to characterizing glycosylation on cultured cells; and the use of cloud computing to deploy mass spectrometry data analysis. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Mass Spectrometry of Glycoproteins: Methods and Protocols is a valuable resource for scientists interested in learning more about this developing field.
The present volume contains the written versions of most of the invited talks of the Spring Meeting of the Condensed Matter Physics section of the Deutsche Physikalische Gesellschaft held from March 25 to 29, 2002 in Regensburg, Germany. Also contained are those talks presented as part of the Symposia most of which were organized by several divisions in collaboration and covered a fascinating selection of topics of current interest. Thus this volume reflects the status of condensed matter physics in Germany in the year 2002. In particular, one notes a slight change in paradigms: from quantum dots and wires to spin transport and soft matter systems in the broadest sense. This seems to reflect the present general trend in physics. Nevertheless, a large portion of the invited papers concentrate on nanostructured matter.
Modern Vibrational Spectroscopy and Micro-Spectroscopy: Theory, Instrumentation and Biomedical Applications unites the theory and background of conventional vibrational spectroscopy with the principles of microspectroscopy. It starts with basic theory as it applies to small molecules and then expands it to include the large biomolecules which are the main topic of the book with an emphasis on practical experiments, results analysis and medical and diagnostic applications. This book is unique in that it addresses both the parent spectroscopy and the microspectroscopic aspects in one volume. Part I covers the basic theory, principles and instrumentation of classical vibrational, infrared and Raman spectroscopy. It is aimed at researchers with a background in chemistry and physics, and is presented at the level suitable for first year graduate students. The latter half of Part I is devoted to more novel subjects in vibrational spectroscopy, such as resonance and non-linear Raman effects, vibrational optical activity, time resolved spectroscopy and computational methods. Thus, Part 1 represents a short course into modern vibrational spectroscopy. Part II is devoted in its entirety to applications of vibrational spectroscopic techniques to biophysical and bio-structural research, and the more recent extension of vibrational spectroscopy to microscopic data acquisition. Vibrational microscopy (or microspectroscopy) has opened entirely new avenues toward applications in the biomedical sciences, and has created new research fields collectively referred to as Spectral Cytopathology (SCP) and Spectral Histopathology (SHP). In order to fully exploit the information contained in the micro-spectral datasets, methods of multivariate analysis need to be employed. These methods, along with representative results of both SCP and SHP are presented and discussed in detail in Part II.
This book provides an introduction to fundamental concepts of solid mechanics for the uninitiated. It also includes a concise review of fundamentals for those who have been away from the field for a time or are studying for a final exam or engineering license exam. The coverage ranges from fundamental definitions through constitutive equations, axial loading, torsion, bending, thermal effects, stability, pressure vessels, plates and shells, computational mechanics, and fibrous composite materials.
An ideal resource for lecturers, this book provides a comprehensive review of experimental space astronomy. The number of astronomers whose knowledge and interest is concentrated on interpreting observations has grown substantially in the past decades; yet, the number of scientists who are familiar with and capable of dealing with instrumentation has dwindled. All of the authors of this work are leading and experienced experts and practitioners who have designed, built, tested, calibrated, launched and operated advanced observing equipment for space astronomy. This book also contains concise information on the history of the field, supported by appropriate references. Moreover, scientists working in other fields will be able to get a quick overview of the salient issues of observing photons in any one of the various energy, wavelength and frequency ranges accessible in space. This book was written with the intention to make it accessible to advanced undergraduate and graduate students.
This thesis contains three breakthrough results in condensed matter physics. Firstly, broken reflection symmetry in the hidden-order phase of the heavy-fermion material URu2Si2 is observed for the first time. This represents a significant advance in the understanding of this enigmatic material which has long intrigued the condensed matter community due to its emergent long range order exhibited at low temperatures (the so-called "hidden order"). Secondly and thirdly, a novel collective mode (the chiral spin wave) and a novel composite particle (the chiral exciton) are discovered in the three dimensional topological insulator Bi2Se3. This opens up new avenues of possibility for the use of topological insulators in photonic, optoelectronic, and spintronic devices. These discoveries are facilitated by using low-temperature polarized Raman spectroscopy as a tool for identifying optically excited collective modes in strongly correlated electron systems and three-dimensional topological insulators.
This thesis addresses elementary dislocation processes occurring in single-crystalline alloys based on Fe-Al, and investigates correspondences between dislocation distribution inside crystals characterized by transmission electron microscopy (TEM) and surface patterns observed using atomic force microscopy (AFM). Fe-Al alloys with different degrees of ordering were prepared and deformed in compression at ambient temperature in-situ inside the AFM device. The evolution of slip line structures was captured in the sequences of AFM images and wavy slip bands, while cross slip at the tip of the slip band and homogeneous fine slip lines were also identified. Further, the thesis develops a technique for constructing 3D representations of dislocations observed by TEM without the prohibitive difficulties of tomography, and creates 3D models of dislocation structures. Generally speaking, the thesis finds good agreement between AFM and TEM observations, confirming the value of AFM as a relevant tool for studying dislocations.
The interaction of electromagnetic waves with matter in the frequency range between 10-6 and 1012 Hz is the domain of broadband dielectric spectroscopy. In this extraordinarily extended dynamic range molecular and collective dipolar fluctuations, charge transport and polarisation effects at inner and outer boundaries take place and determine the dielectric properties of the material being studied. Hence, broadband dielectric spectroscopy enables one to gain a wealth of information on the dynamics of bound (dipoles) and mobile charge carriers depending on the details of a molecular system. It is the intention of this book to be both an introductory course to broadband dielectric spectroscopy as well as a monograph describing recent dielectric contributions to current topics. In this respect the book will correspond to the needs of graduate students but also to specialized researchers, molecular physicists, polymer scientists and materials scientists in academia and in industry.
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students
This volume discusses the latest mass spectrometry (MS)-based technologies for proteoform identification, characterization, and quantification. Some of the topics covered in this book include sample preparation, proteoform separation, proteoform gas-phase fragmentation, and bioinformatics tools for MS data analysis. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and comprehensive, Proteoform Identification: Methods and Protocols is a valuable resource for researchers in both academia and the biopharmaceutical industry who are interested in proteoform analysis using MS.
This book presents recent research and advances in various solid-liquid separation technologies and some applications for treating produced water. It covers fundamental principles and the importance of produced water in major industrial sectors and compares solid-liquid separation technologies. In addition, this book Presents the results of research studies conducted to evaluate the performance of solid-liquid separation technologies Discusses a wide range of technologies, including membrane, filtration, crystallization, desalination, supercritical fluids, coagulation, and floatation Includes experimental, theoretical, modeling, and process design studies With its comprehensive coverage, this book is an essential reference for chemical researchers, scientists, and engineers in industry, academia, and professional laboratories. It is also an important resource for graduate and advanced undergraduate students studying solid-liquid separations.
In the last 500 years, the worldwide community of chemistry has produced individuals who attempted to synthesize a coherent view of chemistry that could be taught to actual students. This book attempts to define the characteristics of good chemical preceptors. Even chemical geniuses can become so focused on their own work that they are not understood by the bulk of their contemporaries and cannot contribute to the synoptic view of chemistry needed for effective teaching. It is hoped that the insights presented in this work will be of benefit to all current preceptors in chemistry.
This thesis presents a series of experimental techniques based on scanning probe microscopy, which make it possible access the degree of freedom of protons both in real and energy space. These novel techniques and methods allow direct visualization of the concerted quantum tunneling of protons within the hydrogen-bonded network and quantification of the quantum component of a single hydrogen bond at a water-solid interface for the first time. Furthermore, the thesis demonstrates that the anharmonic quantum fluctuations of hydrogen nuclei further weaken the weak hydrogen bonds and strengthen the strong ones. However, this trend was reversed when the hydrogen bond coupled to the local environment. These pioneering findings substantially advance our understanding of the quantum nature of H bonds at the molecular level.
This volume presents updated methods and new developments in the field of mass spectrometry imaging. Chapters guide readers through four parts covering imaging, software, data analysis, new instrumentation, and new methodological approaches. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Mass Spectrometry Imaging of Small Molecules aims to be a useful practical guide to researchers to help further their study in this field. |
You may like...
NMR Spectroscopy for Probing Functional…
Anirban Bhunia, Hanudatta S. Atreya, …
Hardcover
R6,525
Discovery Miles 65 250
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,238
Discovery Miles 52 380
NMR Spectroscopy in the Undergraduate…
David Soulsby, Laura J. Anna, …
Hardcover
R4,782
Discovery Miles 47 820
Applied Polymer Science
Ulf W. Gedde, Mikael S. Hedenqvist, …
Hardcover
R3,676
Discovery Miles 36 760
Flavor of Dairy Products
Keith R. Cadwallader, Mary Anne Drake, …
Hardcover
R2,226
Discovery Miles 22 260
|