![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry
This book highlights key technologies and identifies areas for further development in proteogenomics. The utility and usefulness of very large Omics data sets (Next Gen Sequencing of DNA, RNA-seq, ribosome profiling, mass spectrometry- and antibody-based proteomics) is discussed and opportunities and challenges of related bioinformatics applications are outlined. The reader will be able to appreciate the interdisciplinary nature of the continuously evolving area of proteogenomics, which has already grown beyond its original concept of verifying gene annotations by proteomics. The chapters presented in this book are arranged to offer a general overview, rather than to provide detailed descriptions of technologies. The selected applications will provide useful insight into the level of detail that can be obtained in relation to certain diseases areas, including cancer biology and personalized medicine. The readers will find that each chapter delivers a comprehensive approach to proteogenomics, each from the point of view of a specific application. Research scientists interested in innovative processes that can offer a unique and at the same time a more complete access to technological developments and concepts that in turn can contribute to a better understand biological functions should read this book.
Although size exclusion chromatography (SEC) is perhaps the most popular and widely used technique for determining the molecular weight distribution of polymeric materials, there have been very few texts written on this topic. During the past decade, SEC has experienced a considerable amount of growth in regard to column and detector technology and new applications. With these advances, SEC can now be used for determining absolute molecular weight, polymer chain conformation and size, and branching, as well as polymer solution properties. This book introduces the reader to the fundamentals of SEC with emphasis on practical aspects of the technique, such as column and mobile selection, calibration, new detector capabilities and guidelines for performing SEC on most types of polymers, especially those of industrial importance. This book is intended for either those new to the field of SEC, or for those research workers who require a more comprehensive background.
The work presented in this thesis involves a number of sophisticated experiments highlighting novel applications of the Pixel Imaging Mass Spectrometry (PImMS) camera in the field of photoinduced molecular dynamics. This approach represents the union of a new enabling technology (a multiple memory register, CMOS-based pixel detector) with several modern chemical physics approaches and represents a significant leap forward in capabilities. Applications demonstrated include three-dimensional imaging of photofragment Newton spheres, simultaneous electron-ion detection using a single sensor, and ion-ion velocity correlation measurements that open the door to novel covariance imaging experiments. When combined with Coulomb explosion imaging, such an approach is demonstrated to allow the measurement of molecular structure and motion on a femtosecond timescale. This is illustrated through the controlled photoexcitation of torsional motion in biphenyl molecules and the subsequent real-time measurement of the torsional angle.
As a spectroscopic method, Nuclear Magnetic Resonance (NMR) has seen spectacular growth over the past two decades, both as a technique and in its applications. Today the applications of NMR span a wide range of scientific disciplines, from physics to biology to medicine. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive of the literature on this topic. This Specialist Periodical Report reflects the growing volume of published work involving NMR techniques and applications, in particular NMR of natural macromolecules which is covered in two reports: ""NMR of Proteins and Acids"" and ""NMR of Carbohydrates, Lipids and Membranes."" For those wanting to become rapidly acquainted with specific areas of NMR, this title provides unrivalled scope of coverage. Seasoned practitioners of NMR will find this an in valuable source of current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
The volume details techniques, methods, and conceptual developments to further the study of protein aggregation with emphasis on the pleiomorphic proteins implicated in etiology of neurodegeneration. Chapters guide readers through in vitro and in vivo studies of fibrillization and liquid-liquid phase separation processes, and offer a comprehensive account of the state-of-art of structural studies of protein aggregation. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Protein Aggregation: Methods and Protocols aims to be useful and practical guide to new researchers and experts looking to expand their knowledge.
Knowledge of the dynamics of many-electron systems is of fundamental importance to all disciplines of condensed matter physics. A very effective access to electron dynamics is offered by inelastic X-ray scattering (IXS) spectroscopy. The double differential scattering cross section for IXS is directly related to the time-dependent two-particle density correlation function, and, for large momentum and energy transfer (Compton limit) to the electron momentum distribution. Moreover, resonant inelastic X-ray scattering (RIXS) enables the study of electron dynamics via electronic excitations in a very selective manner (e.g. selectively spin, crystal momentum, or symmetry), so that other methods are efficaciously complemented. The progress of IXS spectroscopy is intimately related to the growing range of applications of synchrotron radiation. The aim of the book is to provide the growing community of researchers with accounts of experimental methods, instrumentation, and data analysis of IXS, with representative examples of successful applications, and with the theoretical framework for interpretations of the measurements.
Diffusion in solids at moderate temperatures is a well-known phenomenon. However, direct experimental evidence about the responsible atomic-scale mechanisms has been scarce, due to difficulties in probing the relevant length- and time-scales. The present thesis deals with the application of X-ray Photon Correlation Spectroscopy (XPCS) for answering such questions. This is an established method for the study of slow dynamics on length-scales of a few nanometres. The scattered intensity in the diffuse regime, i.e. corresponding to atomic distances, is very low, however, and so it has so far been considered impossible to use XPCS for this problem. Threefold progress is reported in this work: It proposes a number of systems selected for high diffuse intensity, it optimizes the photon detection and data evaluation procedures, and it establishes theoretical models for interpretating the results. Together these advances allowed the first successful atomic-scale XPCS experiment, which elucidated the role of preferred configurations for atomic jumps in a copper-gold alloy. The growth in available coherent X-ray intensity together with next-generation X-ray sources will open up a wide field of application for this new method.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
Tutorials on Mossbauer Spectroscopy
This book primarily focuses on the radiation effects and compact model of silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). It introduces the small-signal equivalent circuit of SiGe HBTs including the distributed effects, and proposes a novel direct analytical extraction technique based on non-linear rational function fitting. It also presents the total dose effects irradiated by gamma rays and heavy ions, as well as the single-event transient induced by pulse laser microbeams. It offers readers essential information on the irradiation effects technique and the SiGe HBTs model using that technique.
This detailed volume provides a comprehensive overview of state-of-the-art metabolomics methods based on mass spectrometry (MS), and their application in food, nutrition, and biomedical research. The chapters assembled herein cover hot topics related to sample preparation, chromatographic and electrophoretic separation, MS-based analysis, as well as data processing and analysis. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Mass Spectrometry for Metabolomics serves as a timely guide for chemists, biochemists, biologists, nutritionists, clinicians, and other experts working in the growing and exciting field of metabolomics.
More than 40 renowned authorities carefully introduce and update chapters on the theory, fundamentals, techniques, and instrumentation of thin-layer chromatography (TLC) and high-performance thin-layer chromatography (HPTLC), highlighting the latest procedures and applications of TLC to 19 important compound classes. It is one of the only books available with coverage of TLC applications by compound type. Facilitating industrial adaptation through easy reference, the second edition supports practical research strategies with extensive tables of data, offers numerous figures that illustrate techniques and chromatograms, and includes a glossary as well as a directory of equipment suppliers.
The 2007 Spring Meeting of the Arbeitskreis Festk rperphysik was held in Regensburg, Germany, March 2007, in conjunction with the Deutsche Physikalische Gesellschaft. It was one of the largest physics meetings in Europe. The present volume 47 of the Advances in Solid State Physics contains written versions of a large number of the invited talks and gives an overview of the present status of solid state physics where low-dimensional systems are dominating.
Storage and conversion are critical components of important energy-related technologies. "Advanced Batteries: Materials Science Aspects" employs materials science concepts and tools to describe the critical features that control the behavior of advanced electrochemical storage systems. This volume focuses on the basic phenomena that determine the properties of the components, i.e. electrodes and electrolytes, of advanced systems, as well as experimental methods used to study their critical parameters. This unique materials science approach utilizes concepts and methodologies different from those typical in electrochemical texts, offering a fresh, fundamental and tutorial perspective of advanced battery systems. Graduate students, scientists and engineers interested in electrochemical energy storage and conversion will find "Advanced Batteries: Materials Science Aspects" a valuable reference.
Meeting the need for a work that brings together quantum theory and spectroscopy to convey excitation processes to advanced students and specialists wishing to conduct research and understand the entire field rather than just single aspects. Written by an experienced author and recognized authority in the field, this text covers numerous applications and offers examples taken from different disciplines. As a result, spectroscopists, molecular physicists, physical chemists, and biophysicists will all find this a must-have for their research. Also suitable as supplementary reading in graduate level courses.
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
This book reviews a variety of methods in computational chemistry and their applications in different fields of current research. Ab initio methods and regression analyses are discussed with special focus on their application to investigate chemical structures as for example dyes or drug compounds. Further topics are the use of computational methods in the modeling of spectroscopic data or to study reaction mechanisms.
This third volume provides comprehensive protocols on pre-analytical, analytical, plasma, and serum proteomics. New and updated chapters are divided into nine sections, detailing blood processing and handling strategies, discovery- and targeted-based mass spectrometry, including workflows to aid in discovery and targeted data analysis, in addition to software and bioinformatics for the plasma proteome. This edition further integrates emerging areas in the development of technologies for plasma proteomics and assay platforms in biomarker discovery and translational proteomics, enrichment and detection strategies to understand the plasma proteome, and peptide, lipid and metabolite targeted assays. We also detail the emerging analysis of extracellular vesicles isolated from plasma. Written in the format of the highly successful Methods in Molecular Biology series, each of the 33 chapters includes an introduction to the topic, lists necessary materials and methods, includes hints and tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Serum/Plasma Proteomics: Methods and Protocols, Third Edition aims to be comprehensive guide for researchers.
Electron Paramagnetic Resonance (EPR) spectroscopy - also sometimes termed Electron Spin Resonance spectroscopy - has manifold potential uses in biochemistry and medicine. The paramount importance of EPR spectroscopy applied to biological tissues and fluids is that it identifies the changes in redox processes that contribute to disease. EPR spectroscopy has come a long way from its original use to detect malignant tumors. For example, the development and later refinement of methods of low-temperature registration of biological tissues widened the scope of EPR spectroscopy. Innovations made possible by the introduction of spin labels, probes, and traps made EPR spectroscopy ever more applicable to biochemistry and medicine, to the point where in vivo studies are being carefully considered. This comprehensive book discusses spectra of many tissues and bodily fluids, and the quantitative nature of paramagnetic centers in both normal individuals and patients suffering from a variety of diseases. Special attention is given to the EPR examination of bio-molecules, such as enzymes, polypeptides, vitamins, lipids, hydrocarbons, etc., which play an essential role in human activity. This book will be of great interest to physicians specializing in many different areas. Similarly, biologists, biochemists, biophysicists, and chemists will find this book very useful. It has also been written so that it may be used as a textbook at graduate level.
Provides an engaging account of how genetic abnormalities, neurobiology and neuropsychology work in concert to manifest cognitive-behavioral dysfunction. The authors have woven the various molecular genetic, genomic, neurophysiological and neurobehavioral threads together into a cohesive fabric of human genes, brain, and behavior. The first section provides and introduction to neurobehavioral disorders and their phenotypes in order to investigate the pathway between genes and behavior. The second section covers autosomal disorders that produce neurobehavioral dysfunction including neurofibromatosis, Prader-Willi syndrome, and tuberous sclerosis among others. The final section considers X-linked disorders in which syndromal and nonsyndromal forms of XLMR are present. It includes the first comprehensive account of the genotype and phenotype in FRAXE, the other fragile X mutation.
This book reviews the most recent developments of fluorescent imaging techniques for medicinal chemistry research and biomedical applications, including cell imaging, in vitro diagnosis and in vivo imaging. Fluorescent imaging techniques play an important role in basic research, drug discovery and clinical translation. They have great impact to many fields including chemical biology, cell biology, medical imaging, cancer diagnosis and treatment, pharmaceutical science, among others, and they have facilitated our understanding of diseases and helped to develop many novel powerful tools for imaging and treatment of diseases. This book will appeal to scientists from numerous fields such as chemistry, pharmaceutical science, biology, materials science, and medicine, and it will serve as a very useful and handy resource for readers with different levels of scientific knowledge, ranging from entry level to professional level.
"Updates fundamentals and applications of all modes of x-ray spectrometry, including total reflection and polarized beam x-ray fluorescence analysis, and synchrotron radiation induced x-ray emission. Promotes the accurate measurement of samples while reducing the scattered background in the x-ray spectrum."
This edited book, based on material presented at the EU Spec Training School on Multiple Scattering Codes and the following MSNano Conference, is divided into two distinct parts. The first part, subtitled "basic knowledge", provides the basics of the multiple scattering description in spectroscopies, enabling readers to understand the physics behind the various multiple scattering codes available for modelling spectroscopies. The second part, "extended knowledge", presents "state- of-the-art" short chapters on specific subjects associated with improving of the actual description of spectroscopies within the multiple scattering formalism, such as inelastic processes, or precise examples of modelling.
Recent years have seen an explosion in the volume of work carried out using supersonic jets of molecules following the discovery that the technique could provide information on structure and dynamics of a very high quality otherwise impossible to obtain. Written and edited by a first class team of authors, acknowledged world leaders in their subjects, this book describes applications in detail along with analysis of data recorded and background theory. Physical chemists and chemical physicists will find this unique book an essential concentrated source of information and reference.
Infrared and Raman Spectroscopy of Biological Materials facilitates a comprehensive and through understanding of the latest developments in vibrational spectroscopy. It contains explains key breakthroughs in the methodologies and techniques for infrared, near-infrared, and Raman spectroscopy. Topics include qualitative and quantitative analysis, biomedical applications, vibrational studies of enzymatic catalysis, and chemometrics. |
![]() ![]() You may like...
Psychoanalysis, Science and Power…
Kurt Jacobsen, R.D. Hinshelwood
Paperback
R1,081
Discovery Miles 10 810
Genetic Enhancement of Crops for…
Vijay Rani Rajpal, Deepmala Sehgal, …
Hardcover
R3,049
Discovery Miles 30 490
Ystervuis Uit Die See - Uiters Geheime…
Arne Soderlund, Douw Steyn
Paperback
Civil Courts and the European Polity…
Chantal Mak, Betül Kas
Hardcover
R3,277
Discovery Miles 32 770
|