![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials > Semi-conductors & super-conductors
One of the best books on electrostatics for the hobbyists, inventor, or experimenter is updated and expanded to include newly uncovered information on electrostatic generators and complete instructions for building various types, including Wimshurst and Van de Graaff generators. Throughout the book, the author provides hard-to-find information on electrical anomalies, which represent the frontier of electrostatic research.
From physical process to practical applications - Singh makes the complexities of modern semiconductor devices clear! The semiconductor devices that are driving today's information, technologies may seem remarkably complex, but they don't have to be impossible to understand. Filled with figures, flowcharts, and solved examples, Jasprit Singh's Semiconductor Devices provides an accessible, well-balanced introduction to semiconductor physics and its application to modern devices. Beginning with the physical process behind semiconductor devices, Singh clearly explains difficult topics, including bandstructure, effective masses, holes, doping, carrier transport, and lifetimes. Following these physical fundamentals, you'll explore the operation of important semiconductor devices, such as diodes, transistors, light emitters, and detectors, along with issues relating to the optimization of device performance. Features
This book covers all the properties of the material important to anyone working in the electronics or optoelectronics areas.
The technology of crystal growth has advanced enormously during the
past two decades. Among, these advances, the development and
refinement of molecular beam epitaxy (MBE) has been among the msot
important. Crystals grown by MBE are more precisely controlled than
those grown by any other method, and today they form the basis for
the most advanced device structures in solid-state physics,
electronics, and optoelectronics. As an example, Figure 0.1 shows a
vertical-cavity surface emitting laser structure grown by MBE.
Polymers for Light-Emitting Devices and Displays provides an in-depth overview of fabrication methods and unique properties of polymeric semiconductors, and their potential applications for LEDs including organic electronics, displays, and optoelectronics. Some of the chapter subjects include: - The newest polymeric materials and processes beyond the classical structure of PLED - Conjugated polymers and their application in the light-emitting diodes (OLEDs & PLEDs) as optoelectronic devices. - The novel work carried out on electrospun nanofibers used for LEDs. - The roles of diversified architectures, layers, components, and their structural modifications in determining efficiencies and parameters of PLEDs as high-performance devices. - Polymer liquid crystal devices (PLCs), their synthesis, and applications in various liquid crystal devices (LCs) and displays. - Reviews the state-of-art of materials and technologies to manufacture hybrid white light-emitting diodes based on inorganic light sources and organic wavelength converters.
The #1 Practical Guide to Signal Integrity Design-with Revised Content and New Questions and Problems! This book brings together up-to-the-minute techniques for finding, fixing, and avoiding signal integrity problems in your design. Drawing on his work teaching several thousand engineers and graduate students, world-renowned expert Eric Bogatin systematically presents the root causes of all six families of signal integrity, power integrity, and electromagnetic compatibility problems. Bogatin reviews essential principles needed to understand these problems, and shows how to use best design practices and techniques to prevent or address them early in the design cycle. To help test and reinforce your understanding, this new edition adds questions and problems throughout. Bogatin also presents more examples using free tools, plus new content on high-speed serial links, reflecting input from 130+ of his graduate students. * A fully up-to-date introduction to signal integrity and physical design * New questions and problems designed for both students and professional engineers * How design and technology selection can make or break power distribution network performance * Exploration of key concepts, such as plane impedance, spreading inductance, decoupling capacitors, and capacitor loop inductance * Practical techniques for analyzing resistance, capacitance, inductance, and impedance * Using QUCS to predict waveforms as voltage sources are affected by interconnect impedances * Identifying reflections and crosstalk with free animation tools * Solving signal integrity problems via rules of thumb, analytic approximation, numerical simulation, and measurement * Understanding how interconnect physical design impacts signal integrity * Managing differential pairs and losses * Harnessing the full power of S-parameters in high-speed serial link applications * Designing high-speed serial links associated with differential pairs and lossy lines-including new coverage of eye diagrams * Ensuring power integrity throughout the entire power distribution path * Realistic design guidelines for improving signal integrity, and much more For professionals and students at all levels of experience, this book emphasizes intuitive understanding, practical tools, and engineering discipline, rather than theoretical derivation or mathematical rigor. It has earned a well-deserved reputation as the #1 resource for getting signal integrity designs right-first time, every time.
Recent advances in semiconductor technology offer vertical interconnect access (via) that extend through silicon, popularly known as through silicon via (TSV). This book provides a comprehensive review of the theory behind TSVs while covering most recent advancements in materials, models and designs. Furthermore, depending on the geometry and physical configurations, different electrical equivalent models for Cu, carbon nanotube (CNT) and graphene nanoribbon (GNR) based TSVs are presented. Based on the electrical equivalent models the performance comparison among the Cu, CNT and GNR based TSVs are also discussed.
Following two decades of intense research globally, the organic light-emitting diode (OLED) has steadily emerged as the ultimate display technology of choice for the coming decades. Portable active matrix OLED displays have already become prevalent, and even large-sized ultra-high definition 4K TVs are being mass-produced. More exotic applications such as wearable displays have been commercialized recently. With the burgeoning success in displays, researchers are actively bringing the technology forward into the exciting solid-state lighting market. This book presents the knowledge needed for students and researchers from diverse disciplines to understand the underlying principles in OLED technology. It begins with a brief history and fundamental working principles of OLEDs. After introducing the fundamentals, it discusses more efficient OLED designs, as well as advanced strategies to enhance the performance. The text covers in detail important areas such as top-emission, p- and n-type doping, device stability, light extraction, and stacked white OLEDs. It also throws light on the current industry practice and major areas of focus in the near future.
Technological evolution and revolution are both driven by the discovery of new functionalities, new materials and the design of yet smaller, faster, and more energy-efficient components. Progress is being made at a breathtaking pace, stimulated by the rapidly growing demand for more powerful and readily available information technology. High-speed internet and data-streaming, home automation, tablets and smartphones are now "necessities" for our everyday lives. Consumer expectations for progressively more data storage and exchange appear to be insatiable. Oxide electronics is a promising and relatively new field that has the potential to trigger major advances in information technology. Oxide interfaces are particularly intriguing. Here, low local symmetry combined with an increased susceptibility to external fields leads to unusual physical properties distinct from those of the homogeneous bulk. In this context, ferroic domain walls have attracted recent attention as a completely new type of oxide interface. In addition to their functional properties, such walls are spatially mobile and can be created, moved, and erased on demand. This unique degree of flexibility enables domain walls to take an active role in future devices and hold a great potential as multifunctional 2D systems for nanoelectronics. With domain walls as reconfigurable electronic 2D components, a new generation of adaptive nano-technology and flexible circuitry becomes possible, that can be altered and upgraded throughout the lifetime of the device. Thus, what started out as fundamental research, at the limit of accessibility, is finally maturing into a promising concept for next-generation technology.
A thorough examination of the present and future of semiconductor device technology Engineers continue to develop new electronic semiconductor devices that are almost exponentially smaller, faster, and more efficient than their immediate predecessors. Theory of Modern Electronic Semiconductor Devices endeavors to provide an up-to-date, extended discussion of the most important emerging devices and trends in semiconductor technology, setting the pace for the next generation of the discipline’s literature. Kevin Brennan and April Brown focus on three increasingly important areas: telecommunications, quantum structures, and challenges and alternatives to CMOS technology. Specifically, the text examines the behavior of heterostructure devices for communications systems, quantum phenomena that appear in miniaturized structures and new nanoelectronic device types that exploit these effects, the challenges faced by continued miniaturization of CMOS devices, and futuristic alternatives. Device structures on the commercial and research levels analyzed in detail include:
The book contains many homework exercises at the end of each chapter, and a solution manual can be obtained for instructors. Emphasizing the development of new technology, Theory of Modern Electronic Semiconductor Devices is an ideal companion to electrical and computer engineering graduate level courses and an essential reference for semiconductor device engineers.
This book provides the reader with a detailed theoretical treatment of the key mechanisms of superconductivity, up to the current state of the art (phonons, magnons, plasmons). In addition, the book describes the properties of key superconducting compounds that are of most interest for science and its applications today. For many years there has been a search for new materials with higher values of the main parameters, such as the critical temperature and the critical current. At present, the possibility to observe superconductivity at room temperature has become perfectly realistic. The book is especially concerned with high Tc systems, such as the high Tc oxides, hydrides with record values of the critical temperature under high pressure, nanoclusters, etc. A number of interesting novel superconducting systems have been discovered recently. Among them: topological materials, interface systems, intercalated graphene. The book contains rigorous derivations, based on statistical mechanics and many-body theory. The book is also providing qualitative explanations of the main concepts and results, which makes it accessible and interesting for a broader readership.
The study of solids is one of the richest, most exciting, and most successful branches of physics. While the subject of solid state physics is often viewed as dry and tedious this new book presents the topic instead as an exciting exposition of fundamental principles and great intellectual breakthroughs. Beginning with a discussion of how the study of heat capacity of solids ushered in the quantum revolution, the author presents the key ideas of the field while emphasizing the deep underlying concepts. The book begins with a discussion of the Einstein/Debye model of specific heat, and the Drude/Sommerfeld theories of electrons in solids, which can all be understood without reference to any underlying crystal structure. The failures of these theories force a more serious investigation of microscopics. Many of the key ideas about waves in solids are then introduced using one dimensional models in order to convey concepts without getting bogged down with details. Only then does the book turn to consider real materials. Chemical bonding is introduced and then atoms can be bonded together to crystal structures and reciprocal space results. Diffraction experiments, as the central application of these ideas, are discussed in great detail. From there, the connection is made to electron wave diffraction in solids and how it results in electronic band structure. The natural culmination of this thread is the triumph of semiconductor physics and devices. The final section of the book considers magnetism in order to discuss a range of deeper concepts. The failures of band theory due to electron interaction, spontaneous magnetic orders, and mean field theories are presented well. Finally, the book gives a brief exposition of the Hubbard model that undergraduates can understand. The book presents all of this material in a clear fashion, dense with explanatory or just plain entertaining footnotes. This may be the best introductory book for learning solid state physics. It is certainly the most fun to read.
An introduction to the physics of the photovoltaic cell. It should appeal to undergraduate physicists, graduate students and researchers who want an introduction to the subject. The text covers the ground from the fundamental principles of semiconductor physics to the simple models used to describe solar cell operation. It presents theoretical approaches to efficient solar cell design as well as the features of the main practical types of solar cell. A set of exercises and worked solutions dealing with the text are included to aid in assimilation and teaching. It should enable the reader to understand how solar cells work, to be familiar with the terms and concepts of solar cell device physics, and to formulate and solve relevant physical problems.
The authors of this book present current research in the study of superconductivity. Topics discussed in this compilation include the effects of non-magnetic defects in hole doped cuprates; deep cryogenic refrigeration by photons based on the phonon deficit effect in superconductors; superconductivity driven by an anti-polar electric phase in high temperature superconducting materials; superconductive graphite intercalation compounds; a superconducting magnetic field concentrator with nanodimensional branches and slits; magnetic mechanisms of pairing in a strongly correlated electron system of copper oxides; two non-linear mechanisms of correlations between copper carriers in superconductivity and their microscopical descriptions; three dimensionality of the critical state and variational methods for magnetically anisotropic superconductors; theory of multi-band superconductivity; conserving approximation for the self-energy of the t-U-V-J model beyond the Hartree-Fock approximation; and superconductivity as a consequence of an ordering of zero-point oscillations in electron gas.
The study of superconductivity in solids was initiated in 1911 after the discovery of this phenomenon in ordinary metals by Kamerlingh-Onnes. This book presents the fundamentals of the modern microscopic theory of conventional and unconventional superconductivity in high-Tc cuprates and other systems.
This book presents topical research in the field of light-emitting diodes and the systems, uses and efficiency of optoelectronics. Topics discussed include fabricating high efficiency organic light-emitting diodes for flat panel displays and solid-state lighting; reliability estimation from the junction to the packaging of LED; next-generation intelligent and green energy LED backlighting 3D display; inorganic-organic hybrid emitting material fabricated by solvothermal synthesis; and, photonic bandgap defect structure based on IV-VI semiconductors.
This book presents and discusses research in the study of superconductivity. Topics discussed herein include applications of confined quantum field theory to condensed matter systems; thermodynamic properties of superconducting states; vortices in layered superconductors; superconductivity in highly correlated systems; combined effects of disorder and magnetic field in superconductors; and the critical currents and vortex dynamics in percolative superconductors.
Superconductivity is a phenomenon occurring in certain materials generally at very low temperatures, characterised by exactly zero electrical resistance and the exclusion of the interior magnetic field. Like ferromagnetism and atomic spectral lines, superconductivity is a quantum mechanical phenomenon. It cannot be understood simply as the idealisation of "perfect conductivity" in classical physics. Furthermore, superconductivity occurs in a wide variety of materials, including simple elements like tin and aluminium, various metallic alloys and some heavily-doped semiconductors. It does not occur in noble metals like gold and silver, nor in pure samples of ferromagnetic metals. This book gathers the latest research from around the globe in this dynamic field and highlights topics such as super-conducting miniundulators, super-conducting transitions in wire networks, the orbital physics of superconductors, the super-conducting circuits of Josephson junctions, and the types of stresses that affect super-conducting properties and behaviour.
Since first developed in the early sixties, silicon chip technology has made vast leaps forward. From a rudimentary circuit with a mere handful of transistors, the chip has evolved into a technological wonder, packing millions of bits of information on a surface no larger that a human thumbnail. And most experts predict that in the near future, we will see chips with over a billion bits. Quantum dots are small devices that contain a tiny droplet of free electrons. They are fabricated in semiconductor materials and have typical dimensions ranging from nanometres to a few microns. The size and shape of these structures and therefore the number of electrons they contain can be precisely controlled; a quantum dot can have anything from a single electron to a collection of several thousands. The physics of quantum dots shows many parallels with the behaviour of naturally occurring quantum systems in atomic and nuclear physics. As in an atom, the energy levels in a quantum dot become quantised due to the confinement of electrons. Unlike atoms however, quantum dots can be easily connected to electrodes and are therefore excellent tools for studying atomic-like properties. This new book presents the latest research developments in the world.
Superconductivity is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense, world-wide, research effort during this time, a complete understanding of the copper oxide (cuprate) materials is still lacking. Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such "strongly correlated" solids is perhaps the major unsolved problem of condensed matter physics with over ten thousand researchers working on this topic. High-Tc superconductors also have significant potential for applications in technologies ranging from electric power generation and transmission to digital electronics. This ability to carry large amounts of current can be applied to electric power devices such as motors and generators, and to electricity transmission in power lines. For example, superconductors can carry as much as 100 times the amount of electricity of ordinary copper or aluminium wires of the same size. Many universities, research institutes and companies are working to develop high-Tc superconductivity applications and considerable progress has been made. This volume brings together new leading-edge research in the field.
A quantum dot is a particle of matter so small that the addition or removal of an electron changes its properties in some useful way. All atoms are quantum dots, but multi-molecular combinations can have this characteristic. In biochemistry, quantum dots are called redox groups. In nanotechnology, they are called quantum bits or qubits. Quantum dots typically have dimensions measured in nanometers, where one manometer is 10-9 meter or a millionth of a millimetre. The fields of biology, chemistry, computer science, and electronics are all of interest to researchers in nanotechnology. Other applications of quantum dots include nanomachines, neural networks, and high-density memory or storage media. Research is being carried out on nano-crystals, self-assembled dots, and gated structures. This book presents leading-edge research from around the world.
Graphene, the wonder material of the 21st century, is expected to play an important role in future nanoelectronic applications, but the only way to achieve this goal is to grow graphene directly on a semiconductor, integrating it in the chain for the production of electronic circuits and devices. This book summarizes the latest achievements in this field, with particular attention to the graphitization of SiC. Through high-temperature annealing in a controlled environment, it is possible to decompose the topmost SiC layers, obtaining quasi-ideal graphene by Si sublimation with record electronic mobilities, while selective growth on patterned structures makes possible the opening of a gap by quantum confinement. The book starts with a review chapter on the significance and challenges of graphene growth on semiconductors, followed by three chapters dedicated to an up-to-date analysis of the synthesis of graphene in ultrahigh vacuum, and concludes with two chapters discussing possible ways of tailoring the electronic band structure of epitaxial graphene by atomic intercalation and of creating a gap by the growth of templated graphene nanostructures. |
![]() ![]() You may like...
Hybrid-Renewable Energy Systems in…
Hina Fathima, Prabaharan N, …
Paperback
Social Justice and Culturally-Affirming…
Jonathan Chitiyo, Zachary Pietrantoni
Hardcover
R5,830
Discovery Miles 58 300
|