![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry
Advances in Quantum Chemical Topology Beyond QTAIM provides a complete overview of the field, starting with traditional methods and then covering key steps to the latest state-of-the-art extensions of QTAIM. The book supports researchers by compiling and reviewing key methods, comparing different algorithms, and providing computational results to show the efficacy of the approaches. Beginning with an introduction to quantum chemistry, QTAIM and key extensions, the book goes on to discuss interacting quantum atoms and related energy properties, explores partitioning methods, and compares algorithms for QTAIM. Partitioning schemes are them compared in more detail before applications are explored and future developments discussed. Drawing together the knowledge of key authorities in the area, this book provides a comprehensive, pedogeological guide to this insightful theory for all those interested in modelling, exploring and understanding molecular properties.
Photoacoustic and Photothermal Spectroscopy: Principles and Applications introduces the basic principles, instrumentation and major developments in the many applications of Photoacoustic and Photothermal Spectroscopy over the last three decades. The book explains the processes of sound generation by periodic optical excitation and ultrasonic generation by pulsed laser excitation and describes the workings of photoacoustic cells equipped with microphones and piezoelectric transducers. Photoacoustic imaging (PAI) is one of the fastest-growing imaging modalities of recent times. It combines the advantages of ultrasound and optical imaging techniques. These non-invasive and non-destructive techniques offer many benefits to users by enabling spectroscopy of opaque and inhomogeneous materials, (solid, liquid, powder, gel, gases) without any sample preparation, and more.
Advanced Applications of Biobased Materials: Food, Biomedical, and Environmental Applications brings together cutting-edge developments in the preparation and application of biobased materials. The book begins by providing an overview of biobased materials, their classification, and their physical and chemical modifications. This is followed by a section covering the latest techniques in fabrication, processing and characterization. Subsequent chapters are grouped by application area, offering insights into advanced and emerging utilizations of biobased materials in food, biomedical and environmental applications. Sections cover lifecycle assessment, circular economy, sustainability, and future potential. This is a valuable resource for researchers, scientists and advanced students across polymer science, sustainable materials, biomaterials, materials chemistry, composite science, nanotechnology, biomedical engineering, and environmental science, as well a great book for engineers and R&D with an interest in biobased materials for emerging applications in the areas of biomedicine, food and the environment.
Gain a comprehensive understanding of chemistry and see how it relates to health science with INTRODUCTION TO GENERAL, ORGANIC, AND BIOCHEMISTRY, 10E, International Edition. This bestseller features dynamic art, interesting examples, coverage of the latest issues, and a wide variety of medical and biological applications. As you explore topics such as botulin toxin as a cosmetic agent, implications for the use of antibiotics, the Atkins diet, and ultraviolet sunscreen, you will see how useful the study of chemistry is to so many aspects of your life. The book's built-in integration with OWL (Online Web-based Learning) turns your chemistry study time into active experiences that build your comprehension and bring concepts to life.
Special Volume in Memory of Hidetoshi Yamada, Part Two, Volume 82 in the Advances in Carbohydrate Chemistry and Biochemistry series, highlights new advances in the field with this new volume presenting interesting chapters written by an international board of authors. Updates in this new release include Automated and/or Electrochemical Synthesis, In Vivo Chemistry, Pseudo-Glycoconjugates with C-Glycoside linkage, Boron-Mediated Aglycon Delivery (BMAD) for the Stereoselective Synthesis of 1,2-cis Glycosides, and Conformationally Restricted Donors for Stereoselective Glycosylation.
Big Data Analytics in Chemoinformatics and Bioinformatics: With Applications to Computer-Aided Drug Design, Cancer Biology, Emerging Pathogens and Computational Toxicology provides an up-to-date presentation of big data analytics methods and their applications in diverse fields. The proper management of big data for decision-making in scientific and social issues is of paramount importance. This book gives researchers the tools they need to solve big data problems in these fields. It begins with a section on general topics that all readers will find useful and continues with specific sections covering a range of interdisciplinary applications. Here, an international team of leading experts review their respective fields and present their latest research findings, with case studies used throughout to analyze and present key information.
Practical Application of Supercritical Fluid Chromatography for Pharmaceutical Research and Development provides a valuable "go-to" reference for many difficult-to-solve challenges using pertinent chromatographic theory, first-hand case studies, and examples provided from academic and industry experts. This text also enables professors teaching an analytical instrumental course to introduce and instruct students about one of the most sustainable and powerful separation methods currently available. While the text has broad applicability across industrial sectors, it focuses primarily on application in the pharmaceutical industry. The book is designed to allow readers to align current HPLC/UHPLC capabilities with SFC as an orthogonal tool for project specific methods in the pharmaceutical industry. It highlights where SFC falls on the spectrum of useful chromatographic tools for routine and challenging separative methods. Experienced HPLC users who are interested in developing knowledge in orthogonal separation techniques, as well as newcomers to the field of separation science, will find this text particularly useful. Chapters address where SFC may fit the analytical needs of the pharmaceutical industry and alert the readers as to where the technique will not fit. Readers will gain an understanding of how and where SFC may be applied and adapted more routinely across the pharmaceutical industry as a 'green' way of undertaking separation opportunities and challenges. Areas within the pharmaceutical industry include early drug discovery, process chemistry, and late stage development and manufacturing.
Phytochemistry, Computational Tools and Databases in Drug Discovery presents the state-of-the-art in computational methods and techniques for drug discovery studies from medicinal plants. Various tools and databases for virtual screening and characterization of plant bioactive compounds and their subsequent predictions on biological targets for the discovery of new drugs against specific diseases are presented, along with computational tools for the prediction of the toxic effects of phytochemicals on living systems. The book also provides in-depth insight on the applications of these computational tools as well as the databases that describe the interactions of phytochemicals with diseases along with predictions for druggable bioactive compounds. Useful for drug developers, medicinal chemists, toxicologists, phytochemists, plant biochemists and analytical chemists, this book clearly presents the various computational techniques, tools and databases for phytochemical research.
Biomedical Applications of Inorganic Photochemistry, Volume 80 in the Advances in Inorganic Chemistry series, highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors. Chapters in this new release include Photochemical bio-signaling with Ruthenium complexes, Adventures in the photo-uncaging of small molecule bioregulators, Challenges in medicinal inorganic chemistry and best practices to ensure rigor and reproducibility, Strategic Design of Photo-functional Transition Metal Complexes for Targeted Bioimaging and Therapy, Photoactive Manganese carbonyl Complexes with fac-{Mn(CO)3} Moiety: Design, Application, and Potential as Prodrugs in CO Therapy, Mitochondrial Targeting Metal Complexes, and more. Other chapters cover Photoactive Organometallic Compounds with Antimicrobial Properties, Photoactivated platinum anticancer complexes, New ruthenium phthalocyanines liposomal-encapsulated in modulation of nitric oxide and singlet oxygen release: Selectivity cytotoxicity effect on cancerous cell lines, Inorganic Nanoparticles Engineered for Light-Triggered Unconventional Therapies, Mechanistic insight into phot-activation of small inorganic molecules from the biomedical application perspectives, Ruthenium Complexes for Photoactivated Dual Activity: Drug Delivery and Singlet Oxygen Generation, and Leveraging the Photophysical Properties of Rhenium(I) Tricarbonyl Complexes for Biomedical Applications.
Plant Polysaccharides as Pharmaceutical Excipients explores innovative techniques and applications of plant-derived polysaccharides as pharmaceutical excipients. Plant polysaccharides are sustainable, renewable and abundantly available, offering attractive properties in terms of water solubility, swelling ability, non-toxicity and biodegradability. These qualities have resulted in extensive exploration into their applications as excipients in a variety of pharmaceutical dosage forms. This book takes a comprehensive, application-oriented approach, drawing on the very latest research that includes sources, classification and extraction methods of plant polysaccharides. Subsequent chapters focus on plant polysaccharides for individual pharmaceutical applications, enabling the reader to understand their preparation for specific targeted uses. Throughout the book, information is supported by illustrations, chemical structures, flow charts and data tables, providing a clear understanding. Finally, future perspectives and challenges are reviewed and discussed.
Metal Chalcogenide Biosensors: Fundamentals and Applications provides an overview of advances in materials development of chalcogenides for use in biosensing and sensing applications. The metal chalcogenides discussed include highly reactive metals, noble metals and transition metals. Particular attention is given to the morphology, porosity, structure and fabrication of materials for biosensing applications. The connection between the chalcogenides' physical and chemical properties and device performance is explored. Key parameters for biosensor devices are investigated such as thermodynamics, kinetics, selectivity, sensitivity, efficiency and durability to aid in materials selection. Finally, a range of biosensor devices are addressed including gas biosensors, chemical biosensors, environment biosensors and biological molecule sensors. This book is suitable for those in the fields of materials science and engineering, chemistry and physics.
Natural products in the plant and animal kingdom offer a huge diversity of chemical structures that are the result of biosynthetic processes that have been modulated over the millennia through genetic effects. With the rapid developments in spectroscopic techniques and accompanying advances in high-throughput screening techniques, it has become possible to isolate and then determine the structures and biological activity of natural products rapidly, thus opening up exciting opportunities in the field of new drug development to the pharmaceutical industry. Studies in Natural Products Chemistry covers the synthesis or testing and recording of the medicinal properties of natural products, providing cutting edge accounts of the fascinating developments in the isolation, structure elucidation, synthesis, biosynthesis and pharmacology of a diverse array of bioactive natural products.
Iodine-Assisted Synthesis of Six- and Seven-Membered Heterocycles covers both existing and the latest methods for the synthesis of various six- and seven-membered heterocycles using iodine. Covering an important and rapidly growing branch of heterocyclic chemistry, this book allows users easy access to the synthetic protocols for the synthesis of heterocycles, acting as a guide for how to make these important compounds employed as agrochemicals, pharmaceuticals, and veterinary products, using particular reagents. This book will be of interest to students, pharmacologists, biochemists, and organic and medicinal chemists.
Advances in Physical Organic Chemistry, Volume 56 presents the latest reviews of recent work in physical organic chemistry. The book provides a valuable source of information that is ideal not only for physical organic chemists applying their expertise to both novel and traditional problems, but also for non-specialists across diverse areas who identify a physical organic component in their approach to research. Chapters due to be included in this release cover flavin-dependent enzyme catalysed reactions, coacervates and their properties, heavy atom tunnelling, machine learning, acidity and substituent effects.
Virtual Screening and Drug Docking, Volume 59 in the Annual Reports on Medicinal Chemistry series, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics, including Can docking scoring functions guarantee success in virtual screening?, No dance, no partner! A tale of flexibility in docking and virtual screening, Handling Imbalance Data in Virtual Screening, Rational computational approaches to predict novel drug candidates against leishmaniasis, Virtual screening against Mtb DNA gyrase: Applications and success stories, Using Filters in Virtual Screening: A Brief Guide to Minimize Errors and Maximize Efficiency, and more. Additional chapters in the new release include Machine Learning and Deep Learning Strategies for Virtual Screening, Applications of the Virtual Screening to find the novel HIV-1 therapeutic agents, and Large-scale screening of small molecules with docking strategies and its impact on drug discovery.
Advanced Applications of Ionic Liquids discusses the intersection of nanotechnology with ionic liquids (ILs) and materials, along with opportunities for advanced engineering applications in various research fields. Novel materials at nano scales with ILs creates an upsurge in the thermal and electrochemical constancy of the nano scale particles, making them ideal for industrial applications. The implementation of ILs at nano scale includes an interaction of constituents, which is beneficial for electron transfer reactions. These new composites can be implemented as sensors, electronics, catalysts and photonics. Including ILs in polymer composites enhance electrochemical consistency, govern particle size, upsurge conductivity, reduce toxicity, and more. This book is a comprehensive reference for researchers working with IL based technologies for environmental and energy applications.
As the demands for cleaner, more efficient, reduced and zero carbon emitting transportation increase, the traditional focus of Combustion Chemistry research is stretching and adapting to help provide solutions to these contemporary issues. Combustion Chemistry and the Carbon Neutral Future: What will the Next 25 Years of Research Require? presents a guide to current research in the field and an exploration of possible future steps as we move towards cleaner, greener and reduced carbon combustion chemistry. Beginning with a discussion of engine emissions and soot, the book goes on to discuss a range of alternative fuels, including hydrogen, ammonia, small alcohols and other bio-oxygenates, natural gas, syngas and synthesized hydrocarbon fuels. Methods for predicting and improving efficiency and sustainability, such as low temperature and catalytic combustion, chemical looping, supercritical fluid combustion, and diagnostic monitoring even at high pressure, are then explored. Some novel aspects of biomass derived aviation fuels and combustion synthesis are also covered. Combining the knowledge and experience of an interdisciplinary team of experts in the field, Combustion Chemistry and the Carbon Neutral Future: What will the Next 25 Years of Research Require? is an insightful guide to current and future focus areas for combustion chemistry researchers in line with the transition to greener, cleaner technologies.
Thermal Degradation of Polymeric Materials, Second Edition offers a wealth of information for polymer researchers and processors who require a thorough understanding of the implications of thermal degradation on materials and product performance. Sections cover thermal degradation mechanisms and kinetics, as well as various techniques, such as thermogravimetry in combination with mass spectroscopy and infrared spectrometry to investigate thermal decomposition routes. Other chapters focus on polymers and copolymers, including polyolefins, styrene polymers, polyvinyl chloride, polyamides, polyurethanes, polyesters, polyacrylates, natural polymers, inorganic polymers, high temperature-resistant and conducting polymers, blends, organic-inorganic hybrid materials, nanocomposites, and biocomposites. Finally, other key considerations such as recycling of polymers by thermal degradation, thermal degradation during processing, and modelling, are discussed in detail.
Annual Reports in Computational Chemistry, Volume 18 in this important serial, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics, including Atomistic modelling of surface plasmon resonances, Recent Advances in Solvation Modelling Applications: Chemical Properties, Reaction Mechanisms and Catalysis, Entropy considerations in catalysis, High level computational chemistry methods, and Computational Organofluorine chemistry.
Atomically precise metal nanoclusters occupy the gap between discrete atoms and plasmonic nanomaterials, and they offer intriguing physical-chemical properties that can be rationalized in terms of their quantum size effects and discrete electronic states. The atomically precise nature of their structures lends them well to structure-property relationship elucidation, making them particularly useful for informing the rational design of nanoclusters with enhanced performance. Metal Nanocluster Chemistry: Ligand-Protected Metal Nanoclusters With Atomic Precision provides a concise introduction to the study of these useful nanoclusters. Beginning with an introduction to the fundamental concepts of, and prospects for, metal nanoclusters, the book goes on to highlight synthetic methods for controllable preparation. The subsequent chapters then highlight characterization, mechanism of size growth and structure evolution, and physical-chemical properties. Later chapters examine theoretical approaches for calculating and evaluating structures and properties. They also highlight the assembly of nanocluster building blocks and their practical applications. Drawing on the knowledge of its expert author, Metal Nanocluster Chemistry is a useful introductory guide to these exciting structures.
Nanotechnology-Based E-Noses: Fundamentals and Emerging Applications reviews advances in nanomaterials and their modification for use in e-sensors. Theoretical understanding of nanomaterials and technologies for improving sensors with better detection limits are covered, as are the most relevant nanomaterials, their synthesis strategies and the relationship between properties and device performance. Current state-of-the-art progress in nanotechnology device fabrication, along with directions for future applications and challenges are also discussed. This book will be an ideal resource for materials scientists, engineers, chemists, researchers in academia and R&D in industry. Recently, "e-noses" or "electronic sensors" are emerging as advanced technologies for the fast detection of chemicals, gases and explosives. The concept behind the "e-nose" is similar to the capability of humans and dogs in detecting materials based on odors. Nanomaterials can be used for e-nose technologies but their properties must be modified to make them effective sensors. The sensing capability and performance these materials depend on several factors such as morphology, dopants, micro-additives, design of sensors, phase and structure of the nanomaterials.
Instrumental Thin-Layer Chromatography, Second Edition offers a comprehensive source of authoritative information on all aspects of instrumental thin-layer chromatography. The use of short, topic-focused chapters facilitates identifying information of immediate interest for familiar or emerging uses of thin-layer chromatography. The book gives those working in both academia and industry the opportunity to learn, refresh, or deepen their understanding of fundamental and instrumental aspects of thin-layer chromatography, as well as the tools to interpret and manage chromatographic data. The book serves as a practical consolidated guide to the selection of separation conditions and the use of auxiliary techniques. This fully updated new edition restores the contemporary character of the book for those involved in advancing the technology, analyzing data produced, or applying the technique to new application areas. Some chapters have been consolidated to make room for topics not covered in the first edition, reflecting general changes in the field of thin-layer chromatography, especially in effects-directed detection, convenient interfaces for advanced spectroscopic detection, and greater automation possibilities. This book is a valuable reference for anyone who needs to acquire fundamental and practical information to facilitate progress in research and management functions utilizing information acquired by thin-layer chromatography.
Advances in Clinical Chemistry, Volume 112 highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics, including Heterogeneity in Major Depressive Disorder: The need for Biomarker-based and Personalized Treatments, Advances in exosome analysis, Translational Proteomics and Phosphoproteomics: Tissue to Extracellular Vesicles, Immune Checkpoint Therapy, Tumor Immunology, and Biomarkers in Non-Small-Cell Lung Cancer, Advances in Congestive Heart Failure Biomarkers, Fluid biomarkers in Alzheimer's disease, and more.
In-Silico Approaches to Macromolecular Chemistry helps students, researchers and industry professionals gain a clear overview of the field, giving users the knowledge needed to understand and select the most appropriate tools for conducting and analyzing computational studies. With applications across a broad range of areas, many different methods have been developed for exploring macromolecules in silico, making it difficult for researchers to select the most appropriate for their specific needs. Covering both biopolymers and synthetic polymers, this book familiarizes readers with the theoretical tools and software appropriate for such studies. In addition to providing essential background knowledge on both computational tools and macromolecules, the book presents in-depth studies of in silico macromolecule chemistry, discusses and compares these with experimental studies, and highlights the future potential for such approaches. |
![]() ![]() You may like...
Advances in Cybersecurity Management
Kevin Daimi, Cathryn Peoples
Hardcover
R2,722
Discovery Miles 27 220
Heat Transfer Engineering - Fundamentals…
C. Balaji, Balaji Srinivasan, …
Paperback
R3,027
Discovery Miles 30 270
|