![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry
Nanotechnology-Based E-Noses: Fundamentals and Emerging Applications reviews advances in nanomaterials and their modification for use in e-sensors. Theoretical understanding of nanomaterials and technologies for improving sensors with better detection limits are covered, as are the most relevant nanomaterials, their synthesis strategies and the relationship between properties and device performance. Current state-of-the-art progress in nanotechnology device fabrication, along with directions for future applications and challenges are also discussed. This book will be an ideal resource for materials scientists, engineers, chemists, researchers in academia and R&D in industry. Recently, "e-noses" or "electronic sensors" are emerging as advanced technologies for the fast detection of chemicals, gases and explosives. The concept behind the "e-nose" is similar to the capability of humans and dogs in detecting materials based on odors. Nanomaterials can be used for e-nose technologies but their properties must be modified to make them effective sensors. The sensing capability and performance these materials depend on several factors such as morphology, dopants, micro-additives, design of sensors, phase and structure of the nanomaterials.
Instrumental Thin-Layer Chromatography, Second Edition offers a comprehensive source of authoritative information on all aspects of instrumental thin-layer chromatography. The use of short, topic-focused chapters facilitates identifying information of immediate interest for familiar or emerging uses of thin-layer chromatography. The book gives those working in both academia and industry the opportunity to learn, refresh, or deepen their understanding of fundamental and instrumental aspects of thin-layer chromatography, as well as the tools to interpret and manage chromatographic data. The book serves as a practical consolidated guide to the selection of separation conditions and the use of auxiliary techniques. This fully updated new edition restores the contemporary character of the book for those involved in advancing the technology, analyzing data produced, or applying the technique to new application areas. Some chapters have been consolidated to make room for topics not covered in the first edition, reflecting general changes in the field of thin-layer chromatography, especially in effects-directed detection, convenient interfaces for advanced spectroscopic detection, and greater automation possibilities. This book is a valuable reference for anyone who needs to acquire fundamental and practical information to facilitate progress in research and management functions utilizing information acquired by thin-layer chromatography.
Advances in Clinical Chemistry, Volume 112 highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics, including Heterogeneity in Major Depressive Disorder: The need for Biomarker-based and Personalized Treatments, Advances in exosome analysis, Translational Proteomics and Phosphoproteomics: Tissue to Extracellular Vesicles, Immune Checkpoint Therapy, Tumor Immunology, and Biomarkers in Non-Small-Cell Lung Cancer, Advances in Congestive Heart Failure Biomarkers, Fluid biomarkers in Alzheimer's disease, and more.
The OCR A level Lab Books support students in completing the A level Core Practical requirements. This lab book includes: all the instructions students need to perform the Core Practicals, consistent with our A level online teaching resources writing frames for students to record their results and reflect on their work CPAC Skills Checklists, so that students can track the practical skills they have learned, in preparation for their exams practical skills practice questions a full set of answers. This lab book is designed to help students to: structure their A level lab work to ensure that they cover the Core Practical assessment criteria track their progress in the development of A level practical skills create a record of all of the Core Practical work they will have completed, in preparation for revision.
Medicinal Chemistry of Tick-Borne Encephalitis, Volume 58 in the Annual Reports in Medicinal Chemistry serial, highlights new advances in the field, with this new volume presenting interesting chapters on the Discovery of small molecule TBEV antivirals, Perylene as a controversial antiviral scaffold, Animal models of TBEV infection for preclinical studies of drugs and vaccines, Insights from experience in the treatment of tick-borne bacterial co-infections with tick-borne encephalitis, Small molecule-based inhibitors of flaviviral RNA-dependent RNA-polymerase: prospective candidates for treatment of tick-borne encephalitis virus infection, and Structural Biology and Proteomics of Tick-Borne Encephalitis Virus.
Role of Nutrigenomics in Modern-day Healthcare and Drug Discovery presents novel insights into how these tools can be applied in the study of nutrient-gene interaction for the management of certain disease conditions without using synthetic drugs or other treatments that come with side effects. Divided into three parts, Part I presents chapters that give background information of the subject while laying a framework for other chapters to follow. Part II presents chapters that discuss the role of nutrigenomics in healthcare, while Part III presents chapters that discuss the role of nutrigenomics in modern day drug discovery. Written by a global team of experts from key institutions around the world, this book is useful for drug developers, medicinal chemists, public health scientists, molecular biologists, biochemists, toxicologists and food scientists.
Plant Bioactives as Natural Panacea Against Age-induced Diseases: Nutraceuticals and Functional Lead Compounds for Drug Development presents comprehensive information on the complications of aging and the bioactive phytochemicals that in specific herbal formulations, including beverages, can mitigate them. The book extensively describes the current information on the role of plant bioactive components in delaying or preventing the aging process and associated complications, while also covering different strategies and scientific evidence of possible synergistic effects of these studies, enabling the formulation of more effective natural drugs to intervene in aging and associated events. Chapters cover the broad areas of plant bioactive compounds in promoting healthy aging and longevity, including balancing glucose homeostasis, in cognitive impairments, age-related diseases, food trends and the anti-aging diet in Asia and other regions, as well as the social and economic impact of dietary patterns in aging interventions. Written by a team of global experts.
Advances in Quantum Chemistry, Volume 86 highlights new advances in the field, with this new volume presenting topics covering Can orbital basis sets compete with explicitly correlated ones for few-electron systems?, Converging high-level equation-of-motion coupled-cluster energetics with the help of Monte Carlo and selected configuration interaction, Coupled cluster downfolding techniques: a review of existing applications in classical and quantum computing for chemical systems, Multi-reference methods for the description of dynamic and nondynamic electron correlation effects in atoms and molecules, Exploring the attosecond laser-driven electron dynamics in the hydrogen molecule with different TD-CI approaches, and much more. Additional sections cover Molecular systems in spatial confinement: variation of linear and nonlinear electrical response of molecules in the bond dissociation processes, Relativistic Infinite-order two-component methods for heavy elements, Second quantized approach to exchange energy revised - beyond the S^2 approximation, Calculating atomic states without the Born-Oppenheimer approximation, Convergence of the Correlated Optimized Effective Potential Method, and more.
Sustainable Polylactide-Based Composites integrates fundamental knowledge pertaining to manufacturing and characterization of polymer composites with a thorough and critical overview of the state-of-the-art in PLA-based composites, including significant past and recent advances. The book begins with insights into the basics of polymer composites, with special reference to sustainable composites, as well as fundamental knowledge related to PLA. This is followed by chapters on manufacturing methods, morphological characterization techniques, and the mechanical models used for polymer composites. A comprehensive overview of the state-of-the-art in PLA-based sustainable composites of all extensively used fillers is then presented. After providing fundamental knowledge related to PLA and polymer composites, including structure-property-processing relationship, the book focuses on recent research efforts and key research challenges in the development of PLA-based composites, as well as lifecycle assessment and recycling.
Atomic Clusters with Unusual Structure, Bonding and Reactivity: Theoretical Approaches, Computational Assessment and Applications reviews the latest computational tools and approaches available for accurately assessing the properties of a cluster, while also highlighting how such clusters can be adapted and utilized for the development of novel materials and applications. Sections provide an introduction to the computational methods used to obtain global minima for clusters and effectively analyze bonds, outline experimental approaches to produce clusters, discuss specific applications, and explore cluster reactivity and usage across a number of fields. Drawing on the knowledge of its expert editors and contributors, this book provides a detailed guide to ascertaining the stability, bonding and properties of atomic clusters. Atomic clusters, which exhibit unusual properties, offer huge potential as building blocks for new materials and novel applications, but understanding their properties, stability and bonding is essential in order to accurately understand, characterize and manipulate them for further use. Searching for the most stable geometry of a given cluster is difficult and becomes even more so for clusters of medium and large sizes, where the number of possible isomers sharply increase, hence this book provides a unique and comprehensive approach to the topic and available techniques and applications.
Supramolecular Coordination Complexes: Design, Synthesis, and Applications discusses the growth of the field and explores the advantages, opportunities and latest applications of supramolecular complexes. Beginning with an introduction to design principles, synthetic methods, and post-synthetic functionalization of supramolecular complexes, the book goes on to compile the different analytical and computational modeling methods used to understand the structure and functional properties of supramolecular structures. Applications of supramolecular complexes in biomedicine, sensing, catalysis and materials are then explored in detail. Drawing on the knowledge of a global team of experts, this book provides a wealth of interesting information for students and researchers working in the design, synthesis or application of such complexes.
Fused Pyrimidine-Based Drug Discovery covers all categories of fused-pyrimidines along with pharmacological and in silico studies. It covers the chemistry and biological activities, as well as the design of novel fused-pyrimidine scaffolds. N-Heterocyclic scaffolds are found in most known drug candidates, and are of interest to medicinal and organic chemists to design, synthesize and evaluate their biological properties. A variety of fused-pyrimidine molecules have been synthesized and extracted from natural resources, and are found to exhibit various biological activities such as antifolates, anticancer agents, analgesics, antimetabolites, CNS active agents and many more. Some of these scaffolds like purines are also known to have involvement in biological processes and are part of the framework of genetic material. This book focuses on the classification, structural chemistry, and chemical and physical properties along with various approaches for their synthesis. This book is ideal for researchers in organic chemistry both in academic and industrial settings, postgraduates in chemistry and medicinal chemistry.
Design and Fabrication of Large Polymer Constructions in Space is a ground-breaking study of the polymeric materials, advanced chemical processes, and cutting-edge technology required in the construction of large polymer-based structures for space, when all steps in the process are carried out in the space environment, whether in orbit, in deep space, or on the surface of a moon, asteroid, or planet. The book begins by introducing the fundamentals and requirements of large constructions and inflatable structures for space. The next section of the book focuses on the utilization of polymeric materials within the space environment, examining the effects on materials (vacuum, plasma, temperature), the possible approaches to polymerization both in space and in orbit, the preparation and structure of polymer composites, and the methods for testing materials and structures in terms of strength, defects, and aging. Three chapters then cover how these materials and techniques might be applied to specific categories of construction, including larger space habitats, supporting space structures, and ground infrastructure. Finally, the financial aspects, the consequences for human space exploitation, and the possible future developments are discussed. Using materials science to push the boundaries of construction for space exploration and exploitation, this book is a unique resource for academic researchers and advanced students across polymer science, advanced materials, chemical engineering, construction, and space engineering, as well as for researchers, scientists and engineers at space agencies, companies and laboratories, involved in developing materials or technology for use in space. This is also of great interest to anyone interested in the role of materials science in the building of large space stations, spacecraft, planetary bases, large aperture antenna, radiation and thermal shields, and repairmen sets.
Radioactivity: History, Science, Vital Uses and Ominous Peril, Third Edition provides an introduction to radioactivity, the building blocks of matter, the fundamental forces in nature, and the role of quarks and force carrier particles. This new edition adds material on the dichotomy between the peaceful applications of radioactivity and the threat to the continued existence of human life from the potential use of more powerful and sophisticated nuclear weapons. The book includes a current review of studies on the probability of nuclear war and treaties, nonproliferation and disarmament, along with historical insights into the achievements of over 100 pioneers and Nobel Laureates. Through multiple worked examples, the book answers many questions for the student, teacher and practitioner as to the origins, properties and practical applications of radioactivity in fields such as medicine, biological and environmental research, industry, safe nuclear power free of greenhouse gases and nuclear fusion. Ratings and Reviews of Previous Editions: CHOICE Magazine, July 2008: "This work provides an overview of the many interesting aspects of the science of radioactive decays, including in-depth chapters that offer reminiscences on the history and important personalities of the field...This book can be useful as supplemental reading or as a reference when developing course material for nuclear physics, nuclear engineering, or health physics lectures. Special attention has been given to a chapter on the role radioactivity plays in everyday life applications...Generally the book is well produced and will be a valuable resource...Many lectures can be lightened up by including material from this work. Summing up: RECOMMENDED. Upper division undergraduates through professionals; technical program students." U. Greife, Colorado School of Mines, USA "I found the biographical accounts of the various stalwarts of Physics inspirational. Most of them, if not all, had to overcome economic hardships or p[ersonal tragedies or had to do their groundbreaking work in the face of tyranny and war. The biographies also highlighted the high standards of moral convictions that the scientists had as they realized the grave implications of some of their work and the potential threats to humanity. This ought to inspire and motivate young men and women aspiring to be physicists. Even people who have been in the field for a while should find your book re-energizing. It certainly had that effect on me." -- Dr. Ramkumar Venkataraman, Canberra Industries, Inc., Meriden, CT, USA Winner of an Honorable Mention in the 2017 PROSE Awards in the category of Chemistry and Physics (https://proseawards.com/winners/2017-award-winners/ )
Quantum Dots: Fundamentals, Synthesis and Applications compiles key information, along with practical guidance on quantum dot synthesis and applications. Beginning with an introduction, Part One highlights such foundational knowledge as growth mechanisms, shape and composition, electrochemical properties, and production scale-up for quantum dots. Part Two goes on to provide practical guides to key chemical, physical and biological methods for the synthesis of quantum dots, with Part Three reviewing the application of quantum dots and a range of important use cases, including photocatalysis, energy cells and medical imaging. Drawing on the knowledge of its expert authors, this comprehensive book provides practical guidance for all those who already study, develop or use quantum dots in their work.
Jack Sabin, Scientist and Friend, Volume 85 in the Advances in Quantum Chemistry series, highlights new advances in the field, with chapters in this new release including: Elastic scattering of electrons and positrons from alkali atoms, Dissipative dynamics in many-atom systems, Shape sensitive Raman scattering from Nano-particles, Experience in E-learning and Artificial Intelligence, Structure and Correlation of Charges in a Harmonic Trap, Simulation of Molecular Spectroscopy in Binary Solvents, Approach for Orbital and Total Mean Excitation Energies of Atoms, and A New Generation of Quasiparticle Self-Energies. Additional sections cover: The stopping power of relativistic targets, Density functional methods for extended helical systems, Inspecting nlm-distributions due to charge exchange collisions of bare ions with hydrogen, Long-lived molecular dications: a selected probe for double ionization, and much more.
Recent Developments in the Synthesis and Applications of Pyridines is a comprehensive handbook for organic chemists working on innovative approaches to the synthesis of pyridines. Written by scientists in both academia and industry and designed to be a standalone reference, the book features reviews, research results and case studies on synthetic methods and applications of pyridine-based chemotypes. The book will bridge the gap between industry and academia by presenting recent innovative approaches to the synthesis of pyridines, diverse application of pyridines in drug development, heterogeneous catalysis and material science, as well as benchtop to shelf narratives of pyridine-based compounds in the industry. The role of computational chemistry in the development of pyridine-based bioactive molecules is also included. This reference is essential for researchers in organic chemistry both in academic and industrial settings, postgraduates in chemistry and medicinal chemistry.
Biodegradability of Conventional Plastics: Opportunities, Challenges, and Misconceptions brings together innovative research on the biodegradability of conventional plastics, providing an extensive overview of approaches and strategies that may be implemented, while also highlighting other methods for alleviating the eventual environmental impact of plastics. The book begins by providing a lifecycle assessment of plastics, the environmental impact of plastic waste, and the factors that affect the biodegradability of plastics. The different categories and terminologies surrounding bio-based plastics and biodegradable plastics are then defined and explained in detail, as are the issues surrounding bioplastics. Other sections discuss biodegradability, approaches for enhanced biodegradability of various major types of plastics, including polyolefins, polyethylene terephthalate (PET), polystyrene, poly(vinyl chloride), automotive plastics and composites, and agricultural plastic waste. The final part of the book focuses on further techniques and emerging areas, including the utilization of chemical additives, nanomaterials, the role of microbes in terms of microbial degradation and microbial attaching, revalorization of plastic waste through industrial biotechnology, and future opportunities and challenges.
Quantum chemistry is simulating atomistic systems according to the laws of quantum mechanics, and such simulations are essential for our understanding of the world and for technological progress. Machine learning revolutionizes quantum chemistry by increasing simulation speed and accuracy and obtaining new insights. However, for nonspecialists, learning about this vast field is a formidable challenge. Quantum Chemistry in the Age of Machine Learning covers this exciting field in detail, ranging from basic concepts to comprehensive methodological details to providing detailed codes and hands-on tutorials. Such an approach helps readers get a quick overview of existing techniques and provides an opportunity to learn the intricacies and inner workings of state-of-the-art methods. The book describes the underlying concepts of machine learning and quantum chemistry, machine learning potentials and learning of other quantum chemical properties, machine learning-improved quantum chemical methods, analysis of Big Data from simulations, and materials design with machine learning. Drawing on the expertise of a team of specialist contributors, this book serves as a valuable guide for both aspiring beginners and specialists in this exciting field.
Plastics and Sustainability: Practical Approaches provides a broad overview of sustainability as applied to plastics, offering a range of opportunities and solutions to be applied in an academic or industrial setting. The book begins by introducing the challenges and opportunities relating to plastics and environmental sustainability. This is followed by detailed eco-profiles organized by polymer category. Subsequent chapters explore various approaches to plastics sustainability, with in-depth coverage of incineration technology for energy recovery, pyrolysis for chemical recovery, blending technology, design, packaging, circular economy, and biopolymers. Finally, international policies are summarized. The book aims to provide a broad source of information and a range of options to readers on how to evaluate and improve the sustainability of plastics, with analyses of the advantages and drawbacks of different technologies and materials. Authored by two professional engineers with substantial experience in industry and consultancy, this is a valuable resource for all those looking for a wide-ranging overview of sustainability as applied to plastics, including researchers and advanced students from a range of materials science and engineering disciplines, and engineers, manufacturers, scientists, and R&D professionals from a range of industries.
|
![]() ![]() You may like...
Video Workbook with the Math Coach for…
Jamie Blair, John Tobey, …
Paperback
R1,557
Discovery Miles 15 570
Documenting the Beijing Olympics
D.P. Martinez, Kevin Latham
Hardcover
R4,474
Discovery Miles 44 740
The Hacker's Guide to OS X - Exploiting…
Robert Bathurst, Russ Rogers, …
Paperback
|