![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry
Essentials in Modern HPLC Separations, Second Edition discusses the role of separation in high performance liquid chromatography (HPLC). This new and updated edition systematically presents basic concepts as well as new developments in HPLC. Starting with a description of basic concepts, it provides important guidance for the practical utilization of various HPLC procedures, such as the selection of the HPLC type, proper choice of the chromatographic column, selection of mobile phase and selection of the method of detection, all of which are in correlation with the physico-chemical characteristics of the compounds separated. Every chapter has been carefully reviewed, with several new sections added to bring the book completely up-to-date. Hence, it is a valuable reference for students and professors in chemistry.
Luminescent Metal Nanoclusters: Synthesis, Characterization, and Applications provides a comprehensive accounting of various protocols used for the synthesis of metal nanoclusters, their characterization techniques, toxicity evaluation and various applications and future prospects. The book provides detailed experimental routes, along with mechanisms on the formation of benign metallic clusters using biomaterials and a comprehensive review regarding the preparation, properties and prospective applications of these nano clusters in various fields, including therapeutic applications. Various methods to protect nanocluster materials to increase their stability are emphasized, including the incorporation of ligands (protein, small molecule, DNA, thiols). This book addresses a gap in the current literature by bringing together the preparation, characterization and applications of all the possible types of reported metal nanoclusters and their hybrids. It is suitable for materials scientists and engineers in academia and those working in research and development in industry. It may also be of interest to those working in the interdisciplinary nanotechnology community, such as physical chemists.
Conjugated Polymers for Next-Generation Applications, Volume One: Synthesis, Properties and Optoelectrochemical Devices describes the synthesis and characterization of varied conjugated polymeric materials and their key applications, including active electrode materials for electrochemical capacitors and lithium-ion batteries, along with new ideas of functional materials for next-generation high-energy batteries, a discussion of common design procedures, and the pros and cons of conjugated polymers for certain applications. The book's emphasis lies in the underlying electronic properties of conjugated polymers, their characterization and analysis, and the evaluation of their effectiveness for utilization in energy and electronics applications. This book is ideal for researchers and practitioners in the area of materials science, chemistry and chemical engineering.
N-Sulfonated-N-Heterocycles covers the synthesis, chemistry and biological applications of these compounds, focusing on pioneering synthetic approaches, mechanistic insights and their limitations, as well as recent advances in this field. The synthesis of some of N-sulfonated N-heterocycles and their transformation to other useful cyclic and acyclic compounds are discussed, as well as their uses as useful intermediates in the preparation of polymeric and medicinal materials. This book includes detailed methods and protocols, and the focus on applications makes this resource an essential guide for all researchers in the area of organic, medicinal and polymeric synthetic study.
Advances in Organometallic Chemistry, Volume 78, the latest release in this longstanding serial known for its comprehensive coverage of topics in organometallic synthesis, reactions, mechanisms, homogeneous catalysis, and more includes a variety of new chapters in this updated release. Users will find amazing coverage on Multiple bonds stabilized by Terphenyl Ligands, Selectivity in the Activation of C-H Bonds by Rhodium and Iridium Complexes, Transition Metal-Catalyzed C-C and C-B Bond Formation Reactions: Lessons from Computational Studies, Effect of C-Donor Ligands onto Metal-Catalyzed Carbene and/or Nitrene Transfer Reactions, Chemical Bonding and Dynamic Magnetism in f-Element Organometallic Sandwich Compounds, and much more.
Progress in Medicinal Chemistry, Volume 61 provides a review of eclectic developments in medicinal chemistry, with each chapter written by an international board of authors.
Density Matrix Renormalization Group (DMRG)-based Approaches in Computational Chemistry outlines important theories and algorithms of DMRG-based approaches and explores their use in computational chemistry. Beginning with an introduction to DMRG and DMRG-based approaches, the book goes on to discuss the key theories and applications of DMRG, from DMRG for semi-empirical and ab-initio quantum chemistry, to DMRG in embedded environments, frequency spaces and quantum dynamics. Drawing on the experience of its expert authors, sections detail recent ideas and key developments, providing an up-to-date view of current developments in the field for students and researchers in quantum chemistry.
Applications of Polymers and Plastics in Medical Devices: Design, Manufacture, and Performance is a comprehensive guide to plastic materials for medical devices, covering fundamentals, materials, applications and regulatory requirements. Sections cover the role of plastics in medical devices, socioeconomic factors, the classification of medical devices. The performance of, medical grades and suppliers of polymer materials, which are categorized by performance level are also explored, along with manufacturing processes for device components, including extrusion, casting, injection molding and assembly processes. The book then covers applications in detail, examining each device and the role that polymers and plastics play in its construction and function. This is an essential resource for engineers, R&D, and other professionals working on plastics for medical devices and those in the plastics industry, medical device manufacturing, pharmaceuticals, packaging and biotechnology. In an academic setting, this book is of interest to researchers and advanced students in medical plastics, plastics engineering, polymer science, mechanical engineering, chemical engineering, biomedical engineering and materials science.
Chemistry at the Frontier with Physics and Computer Science: Theory and Computation shows how chemical concepts relate to their physical counterparts and can be effectively explored via computational tools. It provides a holistic overview of the intersection of these fields and offers practical examples on how to solve a chemical problem from a theoretical and computational perspective, going from theory to models, methods and implementation. Sections cover both sides of the Born-Oppenheimer approximation (nuclear dynamics and electronic structure), chemical reactions, chemical bonding, and cover theory to practice on three related physical problems (wavepacket dynamics, Hartree-Fock equations and electron-cloud redistribution). Drawing on the interdisciplinary knowledge of its expert author, this book provides a contemporary guide to theoretical and computational chemistry for all those working in chemical physics, physical chemistry and related fields.
Wearable Physical, Chemical and Biological Sensors introduces readers of all backgrounds-chemistry, electronics, photonics, biology, microfluidics, materials, and more-to the fundamental principles needed to develop wearable sensors for a host of different applications. The capability to continuously monitor organ-related biomarkers, environmental exposure, movement disorders, and other health conditions using miniaturized devices that operate in real time provides numerous benefits, such as avoiding or delaying the onset of disease, saving resources allocated to public health, and making better decisions on medical diagnostics or treatment. Worn like glasses, masks, wristwatches, fitness bands, tattoo-like devices, or patches, wearables are being boosted by the Internet of Things in combination with smart mobile devices. Besides, wearables for smart agriculture are also covered. Written by experts in their respective fields, Wearable Physical, Chemical and Biological Sensors provides insights on how to design, fabricate, and operate these sensors.
SERS for Point-of-care and Clinical Applications focuses on the use of Surface-Enhanced Raman Spectroscopy (also known as Surface-Enhanced Raman Scattering) techniques in clinical and point-of-care settings. Sections provide an overview of SERS biomedical applications, providing in-depth information about point-of-care and clinical applications of SERS using specific examples from current literature. These applications are not always immediately evident to newcomers in the field, as Raman and SERS are often introduced as analytical methods for chemical analysis. This book offers a concise introduction to the biomedical applications of SERS for graduate students, scientists and researchers in all related fields.
Recent Advances and Applications of Thermoset Resins, Second Edition provides a reference source for anyone interested in understanding the chemistry, processing, properties, composites and applications of thermoset resins. Sections cover the chemistry of thermoset resins and recent advances in various aspects, including toughening, micro-reinforcement, nano-reinforcement, simultaneous nano-reinforcement and toughening. The book provides detailed information on synthesis, characterization and processing techniques. A critical review of the latest advances in thermoset-based composites and nanocomposites is also presented, along with future directions of research in various areas of thermoset resins. This is a valuable resource for researchers, scientists and advanced students in polymer science, plastics engineering, adhesives and coatings, composites, and materials engineering, as well as R&D professionals, engineers and manufacturers with an interest in thermoset resins and materials for advanced applications.
Geology and Production of Helium and Associated Gases brings together several different theories and models on how helium is generated, migrated to the reservoir, and trapped from several geologic rock types. The importance of this element in society cannot be stressed enough, but helium is in significant short supply. Nitrogen is also important in the fertilizer industry and is a byproduct of helium and natural gas production. Nitrogen presence often indicates the presence of Helium. This book brings together a tremendous amount of geology, engineering, and production methods not available elsewhere in one source.
Particle Separation Techniques: Fundamentals, Instrumentation, and Selected Applications presents the latest research in the field of particle separation methods. This edited book authored by subject specialists is logically organized in sections, grouping the separation techniques according to their preparative or analytical purposes and the particle type. Along with the traditional and classical separation methods suitable for micronic particles, an update survey of techniques appropriate for nanoparticle characterization is presented. This book fills the gap in the literature of particle suspension analysis of a synthetic but comprehensive manual, helping the reader to identify and apply selected techniques. It provides an overview of the techniques available to a reader who is not an expert on particle separation yet about to enter the field, design an experiment, or buy an instrument for his/her new lab.
Sustainable Polylactide-Based Blends provides a critical overview of the state-of-the-art in polylactide (PLA)-based blends, addressing the latest advances, innovative processing techniques and fundamental issues that persist in the field. Sections cover the fundamentals of sustainable polymeric materials, polylactide and polymer blends, current and upcoming processing technologies, structure and morphology characterization techniques for PLA and PLA-based blends, and the processing, morphology development, and properties of polylactide-based blends. Final chapters focus on current and future applications, market potential, key challenges and future outlooks. Throughout the book, theoretical modeling of immiscible polymer blends helps to establish structure-property relationships in various PLA-based polymer blends. With in-depth coverage of fundamentals and processing techniques, the book aims to support the selection of each processing method, along with an understanding of surface chemistry to achieve improved compatibility between phases.
Studies in Natural Products Chemistry, Volume 73 covers the synthesis, testing and recording of medicinal properties of natural products, providing cutting-edge accounts of fascinating developments in the isolation, structure elucidation, synthesis, biosynthesis and pharmacology of a diverse array of bioactive natural products. Natural products in the plant and animal kingdom offer a huge diversity of chemical structures that are the result of biosynthetic processes that have been modulated over millennia through genetic effects. With rapid developments in spectroscopic techniques and accompanying advances in high-throughput screening techniques, it has become possible to isolate and determine the structures and biological activity of natural products. Hence, these new discoveries have created new avenues and applications for their use.
Organochalcogen compounds reviews the state of the art in new green protocols involving organochalcogen compounds (Se, S, and Te), including the use of nonconventional reaction media, alternative solvents, and solvent-free protocols to prepare these important compounds. Bringing together several leading researchers in organochalcogen chemistry, it provides an authoritative overview of the current state of the field and compiles recent advances in methodologies for the application of green chemistry principles in compound development. These include the use of organochalcogen compounds as intermediates, catalysts, or target products across a range of applications. The recent developments outlined in in the book reflect the efforts of the researchers in this area to move toward a more sustainable chemistry, giving the book the dual benefit of highlighting the latest developments in the field while also showing how the principles of green chemistry can effectively be included in active research projects. Thus it is a valuable reference for chemists, particularly those working in organic, green, and synthetic chemistry across both academia and industry.
Design and Fabrication of Large Polymer Constructions in Space is a ground-breaking study of the polymeric materials, advanced chemical processes, and cutting-edge technology required in the construction of large polymer-based structures for space, when all steps in the process are carried out in the space environment, whether in orbit, in deep space, or on the surface of a moon, asteroid, or planet. The book begins by introducing the fundamentals and requirements of large constructions and inflatable structures for space. The next section of the book focuses on the utilization of polymeric materials within the space environment, examining the effects on materials (vacuum, plasma, temperature), the possible approaches to polymerization both in space and in orbit, the preparation and structure of polymer composites, and the methods for testing materials and structures in terms of strength, defects, and aging. Three chapters then cover how these materials and techniques might be applied to specific categories of construction, including larger space habitats, supporting space structures, and ground infrastructure. Finally, the financial aspects, the consequences for human space exploitation, and the possible future developments are discussed. Using materials science to push the boundaries of construction for space exploration and exploitation, this book is a unique resource for academic researchers and advanced students across polymer science, advanced materials, chemical engineering, construction, and space engineering, as well as for researchers, scientists and engineers at space agencies, companies and laboratories, involved in developing materials or technology for use in space. This is also of great interest to anyone interested in the role of materials science in the building of large space stations, spacecraft, planetary bases, large aperture antenna, radiation and thermal shields, and repairmen sets.
ICP-MS and Trace Element Analysis as Tools for Better Understanding Medical Conditions, Volume 97 discusses trace elements and how they play an important role in biological functions and metabolism in the human body. Chapters cover Biomedical analysis by ICP-MS: A focus on single cell, Advanced statistical tools and machine learning applied to trace element analysis associated with medical conditions, ICP-MS as a tool to understand trace element homeostasis in neurological disorders, High-precision isotopic analysis of essential mineral elements - possibilities for medical diagnosis and prognosis, Exploring ICP-MS as a versatile technique: From imaging to chemical speciation, and more.
Arynes have been important, well-recognized reactive intermediates in organic chemistry since the first speculation of their existence at the beginning of the 20th century. In recent years, synthetic chemistry with arynes has experienced a remarkable revival, leading to diverse new reactions that provide convenient and direct access to various aromatic compounds of high synthetic significance. Comprehensive Aryne Synthetic Chemistry summarizes the progress in the synthetic utilization of arynes for noncatalytic and transition metal-catalyzed reactions developed in the last 20 years. The book covers a broad range of topics including methods of generating arynes, regioselectivity, electrophilic couplings, pericyclic reactions, transition metal-catalyzed reactions, and cycloadditions. It is ideal for advanced students and researchers working in synthetic organic chemistry in academia and industry.
Renewable Carbon: Science, Technology and Sustainability identifies production pathways and technologies for the production of chemicals and presents relevant information to bridge the gap between reaction engineering and process design. The book uses a multidisciplinary approach, focusing on important aspects of basic science, technological advantages (and hurdles), and key sustainability aspects. It incorporates organic, inorganic and biochemical synthesis and analyzes the myriad of technologies available, including nanotechnology, biotechnology and thermochemistry. Sections cover the synthesis of carbon derivatives through multiple pathways (Science), technologies available for its generation (Technology), and assess sustainability and new supply chains (Sustainability). This book will serve as a valuable reference for academics, research scientists and industry practitioners in green chemistry, chemical engineering, materials science and environmental engineering.
Electrochemical Sensors: From Working Electrodes to Functionalization and Miniaturized Devices provides an overview of the materials, preparation and fabrication methods for biosensor applications. The book introduces the field of electrochemistry and its fundamentals, also providing a practical overview of working electrodes as key components for the implementation of sensors and assays. Features covered include the prompt transfer of electrons, favorable redox behavior, biocompatibility, and inertness in terms of electrode fouling. Special attention is dedicated to analyzing the various working materials systems for electrodes used in electrochemical cells such as gold, carbon, copper, platinum and metal oxides. This book is suitable for academics and practitioners working in the disciplines of materials science and engineering, analytical chemistry and biomedical engineering.
Aggregation-Induced Emission (AIE): A Practical Guide introduces readers to the topic, guiding them through fundamental concepts and the latest advances in applications. The book covers concepts, principles and working mechanisms of AIE in AIE-active luminogens, with different classes of AIE luminogens reviewed, including polymers, three-dimensional frameworks (MOFs and COFs) and supramolecular gels. Special focus is given to the structure-property relationship, structural design strategies, targeted properties and application performance. The book provides readers with a deep understanding, not only on the fundamental principles of AIE, but more importantly, on how AIE luminogens and AIE properties can be incorporated in material development. |
You may like...
The Economics of Financial and Medical…
L. Jean Camp, M. Eric Johnson
Hardcover
R1,408
Discovery Miles 14 080
|