![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry
This book covers the progress of the last 10 years of studies on cocoa butter. Descriptions of several aspects, including physical characteristics such as rheology, hardness, melt profiles, etc., studied by new and advanced techniques are included. Similarly, the polymorphism of cocoa butter is reconsidered in light of studies done by synchrotron DSC, FTIR, and SAXS techniques. These data are complemented by new understandings on the cause of the crystallization and transitions of the polymorphs. Other aspects such as the effect of minor components, emulsifiers, and other fats are discussed in great detail in this book.
Drawing on the expertise of researchers from around the world, the second edition of this invaluable handbook, now updated to cover the lastest advances across several areas of research, offers one of the most complete and respected references on biodiesel development, improvements, and applications. It covers the conversion of vegetable oils, animal fats, and used oils into biodiesel fuel. The handbook delivers solutions to issues associated with biodiesel feedstocks, production issues, quality control, viscosity, stability, and applications, as well as emissions and other environmental impacts. In addition to technical material, it updates readers on the status of the biodiesel industry worldwide.
Information literacy-the ability to find, evaluate, and use information resources-is an important skill for future chemists. Students and scientists need to distinguish between information provided by Wikipedia, ChemSpider, research journals, and The New York Times, depending on the intended use of the information sought. Instructors and librarians may often teach these skills through stand-alone database demonstrations, video tutorials, and lectures. However, it is possible to teach these skills in a more contextual and integrated manner by designing chemistry assignments that incorporate information literacy as a learning outcome. This book will prove useful for librarians and chemistry instructors who are designing courses in which students develop information literacy in the context of a chemistry course at two-year colleges, public and private universities, and high schools. The chapters in this book review the current state of information literacy in chemistry and provide concrete examples of assignments and interventions aimed at teaching information literacy skills in chemistry curricula. A wide range of options are offered for integrating information literacy into college-level chemistry courses, including general chemistry, organic chemistry, science courses for students not majoring in science, and chemistry capstone research courses.
This volume is an essential handbook for anyone interested in performing the most accurate spectrophotometric or other optical property of materials measurements. The chapter authors were chosen from the leading experts in their respective fields and provide their wisdom and experience in measurements of reflectance, transmittance, absorptance, emittance, diffuse scattering, color, and fluorescence. The book provides the reader with the theoretical underpinning to the methods, the practical issues encountered in real measurements, and numerous examples of important applications. Written by the leading international experts from industry, government, and academiaWritten as a handbook, with in depth discussion of the topicsFocus on making the most accurate and reproducible measurementsMany practical applications and examples
The second edition of "Internal Photoemission Spectroscopy" thoroughly updates this vital, practical guide to internal photoemission (IPE) phenomena and measurements. The book's discussion of fundamental physical and technical aspects of IPE spectroscopic applications is supplemented by an extended overview of recent experimental results in swiftly advancing research fields. These include the development of insulating materials for advanced SiMOS technology, metal gate materials, development of heterostructures based on high-mobility semiconductors, and more. Recent results concerning the band structure of important interfaces in novel materials are covered as well. Internal photoemission involves the physics of charge carrier
photoemission from one solid to another, and different
spectroscopic applications of this phenomenon to solid state
heterojunctions. This technique complements conventional external
photoemission spectroscopy by analyzing interfaces separated from
the sample surface by a layer of a different solid or liquid.
Internal photoemission provides the most straightforward, reliable
information regarding the energy spectrum of electron states at
interfaces. At the same time, the method enables the analysis of
heterostructures relevant to modern micro- and nano-electronic
devices as well as new materials involved in their design and
fabrication.
Even the most cursory survey of the chemical literature reveals that modern NMR spectroscopy has indeed fulfilled its potential as a powerful and indispensable tool for probing molecular structure, providing detail that is comparable to, and sometimes surpasses that, of X-ray crystallography. As NMR spectroscopy's 70th anniversary approaches, the diversity of chemical problems to which this technique can be applied continues to grow across many scientific fields. Beyond the laboratory setting, the technology underlying NMR is now a widely used and critical medical diagnostic technique, Magnetic Resonance Imaging (MRI). Unfortunately, the number of applications of NMR spectroscopy across so many STEM-related fields presents significant challenges in how best to introduce this powerful technique in meaningful ways at the undergraduate level. Inspired by the development of the field, and building upon the work of previous symposia and an ACS symposium series book on this topic (3), a symposium was developed, entitled "NMR Spectroscopy in the Undergraduate Curriculum," for the 239th American Chemical Society National Meeting in San Francisco. This book brings together all of the presenters who have been successful in developing and successfully integrating NMR spectroscopy pedagogy across their undergraduate curriculums. Their knowledge and experiences will aid readers who are interested in expanding and invigorating their own curriculum.
A classic in the area of organic synthesis, "Strategies and
Tactics in Organic Synthesis" provides a forum for investigators to
discuss their approach to the science and art of organic synthesis.
Rather than a simple presentation of data or a secondhand analysis,
we are given stories that vividly demonstrate the power of the
human endeavor known as organic synthesis and the creativity and
tenacity of its practitioners. Firsthand accounts of each project
tell of the excitement of conception, the frustration of failure
and the joy experienced when either rational thought or good
fortune gives rise to the successful completion of a project. This
book series shows how synthesis is really done, and we are
educated, challenged and inspired by these accounts, which portray
the idea that triumphs do not come without challenges. We also
learn that we can meet challenges to further advance the science
and art of organic synthesis, driving it forward to meet the
demands of society, in discovering new reactions, creating new
designs and building molecules with atom and step economies that
provide solutions through function to create a better world.
The solutions manual contains worked-out solutions for all the starred problems in the text. For added value and convenience, the Student Solutions Manual can be packaged with the text. Contact your local sales representative for more information.
Nuclear magnetic resonance (NMR) is an analytical tool used by
chemists and physicists to study the structure and dynamics of
molecules. In recent years, no other technique has gained such
significance as NMR spectroscopy. It is used in all branches of
science in which precise structural determination is required and
in which the nature of interactions and reactions in solution is
being studied. "Annual Reports on NMR Spectroscopy" has established
itself as a premier means for the specialist and non-specialist
alike to become familiar with new techniques and applications of
NMR spectroscopy. Nuclear magnetic resonance (NMR) is an analytical tool used by chemists and physicists to study the structure and dynamics of molecules. In recent years, no other technique has gained such significance as NMR spectroscopy. It is used in all branches of science in which precise structural determination is required and in which the nature of interactions and reactions in solution is being studied. "Annual Reports on NMR Spectroscopy" has established itself as a premier means for the specialist and non-specialist alike to become familiar with new techniques and applications of NMR spectroscopy.
Now more than ever we are facing pressing world challenges of energy (identifying alternate energy), food (ensuring the food supply), water (providing clean water), and human health (enabling individualized medicine); and to solve these challenges will require chemistry and the related chemical sciences. Integrating sustainability into everything we do from instituting responsible operations, to selecting partners for change and innovating sustainable solutions. Industry needs academe to prepare their graduates to ascend the ladder with skill and agility. This can only be done by integrating sustainability expeditiously into chemistry curricula.
Foams are ubiquitous in our daily lives. Their presence is highly desirable in certain foods, drinks and cosmetics, and they are essential in oil recovery and mineral extraction. In some industrial processes (such as the manufacture of glass, paper and wine) foams are an unwelcome by-product. Why do they appear? What controls the rate at which they disappear? Do they flow in the same way as ordinary liquids? All of these questions and more are addressed here, incorporating significant recent contributions to the field of foams. This book is the first to provide a thorough description of all aspects of the physico-chemical properties of foams. It sets out what is known about their structure, their stability, and their rheology. Engineers, researchers and students will find descriptions of all the key concepts, illustrated by numerous applications, as well as experiments and exercises for the reader. A solutions manual for lecturers is available via the publisher's web site.
A classic in the area of organic synthesis, " Strategies and
Tactics in Organic Synthesis" provides a forum for investigators to
discuss their approach to the science and art of organic synthesis.
Rather than a simple presentation of data or a second-hand
analysis, this book vividly demonstrates through first hand
accounts how synthesis is really done and how by discovering new
reactions, creating new designs and building molecules with atom
and step economies, the advancement of the science of organic
synthesis is providing solutions through function to create a
better world.
This title provides comprehensive coverage of modern gas
chromatography including theory, instrumentation, columns, and
applications addressing the needs of advanced students and
professional scientists in industry and government laboratories.
Chapters are written by recognized experts on each topic. Each
chapter offers a complete picture with respect to its topic so
researchers can move straight to the information they need without
reading through a lot of background information.
As the global climate changes, scientists anticipate that the distribution of animal populations and disease vectors will expand. In the case of arthropods, such efforts hold immense significance as they have the potential to increase human mortality and suffering from arboviruses above current levels. The 238th American Chemical Society National Meeting and Exposition in Washington, D.C. on August 16-20, 2009, offered an opportunity for researchers to present and discuss new findings in invertebrate repellents research, regulations, and technology development. Recently efforts have been made to understand the role of chemicals in arthropod behavior, and screening programs are starting to incorporate repellency testing into their battery of bioassays. The lack of standardized protocols for measuring and comparison of repellents has remained a significant obstacle in arthropod research. Oftentimes studies report variable measures of success, and comparison of results across studies is not always consistent. Progress in the standardization of arthropod test methods for repellents would be valuable to many groups including academic researchers working in the field, contract labs supplying test results, government research laboratories, regulatory bodies in the process of developing guidelines for product registration, as well as companies looking to invest in new technologies. Perhaps one complicating factor in this process has been that research and technology haven't moved fast enough to meet the demand for effective arthropod repellents. Issues such as pest arthropod resurgence and insecticide/repellent resistance to chemical can create new challenges and add pressure for researchers. The collection of chapters in this book covers a range of applied and basic research on arthropod repellents. An overview of the state of arthropod repellents research is provided at the start. In the chapters that follow, there is a selection of papers demonstrating research on new repellent technologies at different stages of development. The scope of basic and applied research methods described in these chapters on new repellent technologies presents the range of testing that is often necessary to move a repellent technology forward in development. The transition from newly developed technologies to registered products is achieved in perspective of a growing market for natural arthropod repellents. New technologies that are completely developed and have gone through registration need to be accompanied by successful commercialization. The growing market for natural arthropod repellents presents such an example and highlights new opportunities in this area. The concluding chapter discusses the public entomology landscape, past and future opportunities for the development of chemical protectants.
This book describes the profound changes that occurred in the teaching of chemistry in western countries in the years immediately following the Soviet Union's launch of Sputnik, the first artificial Earth satellite, in 1957. With substantial government and private funding, chemistry educators introduced new curricula, developed programs to enhance the knowledge and skills of chemistry teachers, conceived of new models for managing chemistry education, and experimented with a plethora of materials for visualization of concepts and delivery of content. They also began to seriously study and apply findings from the behavioral sciences to the teaching and learning of chemistry. Now, many chemistry educators are contributing original research in the cognitive sciences that relates to chemistry education. While Sputnik seemed to signal the dawn of far-reaching effects that would take place in political, diplomatic, and strategic, as well as in educational spheres, the seeds of these changes were sown decades before, mainly through the insight and actions of one individual, Neil Gordon, who, virtually singlehandedly, launched the ACS Division of Chemical Education and the Journal of Chemical Education. These two institutions provided the impetus for the United States to eventually become the undisputed leader in chemistry education worldwide.
The world is chiral. Most of the molecules in it are chiral, and asymmetric synthesis is an important means by which enantiopure chiral molecules may be obtained for study and sale. Using examples from the literature of asymmetric synthesis, this book presents a detailed analysis of the factors that govern stereoselectivity in organic reactions. After an explanation of the basic physical-organic principles governing stereoselective reactions, the authors provide a detailed, annotated glossary of stereochemical terms. A chapter on "Practical Aspects of Asymmetric Synthesis" provides a critical overview of the most common methods for the preparation of enantiomerically pure compounds, techniques for analysis of stereoisomers using chromatographic, spectroscopic, and chiroptical methods. The authors then present an overview of the most important methods in contemporary asymmetric synthesis organized by reaction type. Thus, there are four chapters on carbon-carbon bond forming reactions, one chapter on reductions, and one on oxidations (carbon-oxygen and carbon-nitrogen bond forming reactions). This organization allows the reader to compare the leading methods for asymmetric synthesis in an appropriate context. A highlight of the book is the presentation and discussion of
transition states at the current level of understanding, for
important reaction types. In addition, extensive tables of examples
are used to give the reader an appreciation for the scope of each
reaction. Finally, leading references are provided to natural
product synthesis that has been accomplished using a given reaction
as a key step.
"Organic Syntheses Based on Named Reactions" is an indispensable
reference companion for chemistry students and researchers.
Building on Hassner & Stumer s highly regarded 2e, this new
work reviews 750 reactions, with over 100 new stereoselective and
regioselective reactions. Each A-Z entry provides a carefully
condensed summary of valuable information that a chemist needs to
understand and utilize these fundamental reactions in their work,
including brief practical details. The book is illustrated with
real synthetic examples from the literature and about 3,400
references to the primary literature to aid further reading.
Extensive indexes (name, reagent, reaction) and a very useful
functional group transformation index help the reader fully
navigate this extensive collection of important reactions. With its
comprehensive coverage, superb organization and quality of
presentation, this long-awaited new edition belongs on the shelf of
every organic chemist.
This book discusses the combined fields of Intellection Property
and Information Science. At this crossroads of these two
disciplines are lawyers, educators, intellectual property
specialists, searchers, librarians, and consultants, each requiring
a lengthy list of skills necessary for the job. The results of the
work they do is used for business and legal decisions across many
sectors of our society, including industry, academia, government,
and non-profits, to name a few. This book originated from the
American Chemical Society (ACS) Symposium entitled "IP to IP:
Intellection Property for Information Professionals," presented in
Washington DC on August 19th, 2009. It was organized to highlight
the specialty training and education required to work in this
field. The book is targeted towards Information Scientists learning
about Intellectual Property. Traditional education sources such as
universities are represented, and are specialty offerings from the
pharmaceutical sector and the United States Patent and Trademark
Office (USPTO).
This book, based primarily on late breaking work ... provides an
interesting snapshot at some of the main lines of current and new
research within the field, such as investigation of the novel
properties of ionic liquids and their uses in separations (e.g.,
gases, organics, and metal ions), biochemistry, medicine, and
nanochemistry. The chapters also reflect the growing theoretical
and computational work within the field leading to new predictive
capability.
This book makes a serious effort at bringing forth and synergistically combining the concepts of green chemistry, sustainability and nanotechnology and should motivate scientistsat all levels to think clearly and seriously about creating and optimizing novel and sustainable green approaches to nanotechnology. The chapters in this book can be divided into three broad categories: 1) Advancement in research on pollution control through the green chemistry principles of nanotechnology; 2) Emergence of nanomaterials in widespread applications in various scientific fields, including but not limited to sensors and catalysts; 3) Extension of research into nanotechnology and green nanotechnology at a rapid pace. Review articles on the individual aspects of these diverse and complementary topics have become important resources for researchers, industry leaders, and regulators, both nationally and internationally. This book contains a few chapters associated with these particular themes, and provides glimpses of the many difficulties and challenges faced by those who seek to not only understand but also regulate the new nanomaterials. Nanotechnology represents a unique field of science, and necessitates new and novel sustainable approaches to create usable end products for the market place with the primary goal of yielding less adverse effects upon both human health and the environment.
There are eight columns in the Periodic Table. The eighth column is
comprised of the rare gases, so-called because they are the rarest
elements on earth. They are also called the inert or noble gases
because, like nobility, they do no work. They are colorless,
odorless, invisible gases which do not react with anything, and
were thought to be unimportant until the early 1960s. Starting in
that era, David Fisher has spent roughly fifty years doing research
on these gases, publishing nearly a hundred papers in the
scientific journals, applying them to problems in geophysics and
cosmochemistry, and learning how other scientists have utilized
them to change our ideas about the universe, the sun, and our own
planet.
Compelling evidence exists to support the hypothesis that both
formal and informal mentoring practices that provide access to
information and resources are effective in promoting career
advancement, especially for women. Such associations provide
opportunities to improve the status, effectiveness, and visibility
of a faculty member via introductions to new colleagues, knowledge
of information about the organizational system, and awareness of
innovative projects and new challenges.
This book examines the history and fundamentals of the physical organic chemistry discipline. With the recent flowering of the organic synthesis field, physical organic chemistry has seemed to be shrinking or perhaps is just being absorbed into the toolkit of the synthetic chemist. The only Nobel Prize that can be reasonably attributed to a physical organic chemist is the 1994 award to George Olah, although Jeffrey I. Seeman has recently made a strong case that R. B. Woodward was actually a physical organic chemist in disguise (I). 2014 saw the awarding of the 50th James Flack Norris Award in Physical Organic Chemistry. James Flack Norris was an early physical organic chemist, before the discipline received its name. This book provides insight into the fundamentals of the field, and each chapter is devoted to a major discovery or to noted physical organic chemists, including Paul Schleyer, William Doering, and Glen A. Russell.
Collaborations between scientists often transcend borders and cultural differences. The fundamental nature of science allows scientists to communicate using knowledge of their field but the institutions that support them are often hindered by financial and cultural barriers. As a result, science suffers. This book evolved from an August 2009 symposium at the 238th annual meeting of the American Chemical Society in Washington, DC. Its focus is on chemistry students and professors interested in developing a global approach to teaching chemistry, by participating in an international exchange program or incorporating culturally inclusive techniques into their classroom. The book has three broad themes; education research with a globalized perspective, experiences of teaching and learning in different countries, and organizations that support a global view of chemical education and chemistry.
"Progress in Medicinal Chemistry" provides a review of eclectic developments in medicinal chemistry. This volume continues in the serial's tradition of providing an insight into the skills required of the modern medicinal chemist; in particular, the use of an appropriate selection of the wide range of tools now available to solve key scientific problems, including g-secretase modulators, P2X7 antagonists as therapeutic agents for CNS disorders, N-type calcium channel modulators for the treatment of pain, and more.
|
![]() ![]() You may like...
Better Choices - Ensuring South Africa's…
Greg Mills, Mcebisi Jonas, …
Paperback
Exploring Occupant Behavior in Buildings…
Andreas Wagner, William O'Brien, …
Hardcover
R5,718
Discovery Miles 57 180
|