![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry > Electrochemistry & magnetochemistry
Jonathan Scragg documents his work on a very promising material suitable for use in solar cells. Copper Zinc Tin Sulfide (CZTS) is a low cost, earth-abundant material suitable for large scale deployment in photovoltaics. Jonathan pioneered and optimized a low cost route to this material involving electroplating of the three metals concerned, followed by rapid thermal processing (RTP) in sulfur vapour. His beautifully detailed RTP studies - combined with techniques such as XRD, EDX and Raman - reveal the complex relationships between composition, processing and photovoltaic performance. This exceptional thesis contributes to the development of clean, sustainable and alternative sources of energy
Electrochemistry is a discipline of wide scientific and technological interest. Scientifically, it explores the electrical properties of materials and especially the interfaces between different kinds of matter. Technologically, electrochemistry touches our lives in many ways that few fully appreciate; for example, materials as diverse as aluminum, nylon, and bleach are manufactured electrochemically, while the batteries that power all manner of appliances, vehicles, and devices are the products of electrochemical research. Other realms in which electrochemical science plays a crucial role include corrosion, the disinfection of water, neurophysiology, sensors, energy storage, semiconductors, the physics of thunderstorms, biomedical analysis, and so on. This book treats electrochemistry as a science in its own right, albeit resting firmly on foundations provided by chemistry, physics, and mathematics. Early chapters discuss the electrical and chemical properties of materials from which electrochemical cells are constructed. The behavior of such cells is addressed in later chapters, with emphasis on the electrodes and the reactions that occur on their surfaces. The role of transport to and from electrodes is a topic that commands attention, because it crucially determines cell efficiency. Final chapters deal with voltammetry, the methodology used to investigate electrode behavior. Interspersed among the more fundamental chapters are chapters devoted to applications of electrochemistry: electrosynthesis, power sources, "green electrochemistry," and corrosion. "Electrochemical Science and Technology" is addressed to all who have a need to come to grips with the fundamentals of electrochemistry and to learn about some of its applications. It will constitute a text for a senior undergraduate or graduate course in electrochemistry. It also serves as a source of material of interest to scientists and technologists in various fields throughout academia, industry, and government - chemists, physicists, engineers, environmentalists, materials scientists, biologists, and those in related endeavors. This book: Provides a background to electrochemistry, as well as treating the topic itself. Is accessible to all with a foundation in physical science, not solely to chemists. Is addressed both to students and those later in their careers. Features web links (through www.wiley.com/go/EST) to extensive material that is of a more tangential, specialized, or mathematical nature. Includes questions as footnotes to support the reader's evolving comprehension of the material, with fully worked answers provided on the web. Provides web access to Excel(R) spreadsheets which allow the reader to model electrochemical events. Has a copious Appendix of relevant data.
Nowadays, there are increasing demands for the control and
specification of all aspects of industrial manufacturing. There is
also a growing need to understand various biological processes and
conditions for agricultural production, and concern for protection
of the environment and human health. These factors have made it
imperative to develop adequate methods for the analysis of gaseous
substances or substances that can be converted to the gaseous
state. It is not only necessary to apply known and developed
methods correctly, but novel analytical procedures must also be
found. Instrumentation should be improved and the applications of
these methods will have to be extended.
This text probes topics and reviews progress in interfacial electrochemistry. It supplies chapter abstracts to give readers a concise overview of individual subjects and there are more than 1500 drawings, photographs, micrographs, tables and equations. The 118 contributors are international scholars who present theory, experimentation and applications.
An eclectic mix of studies on chemical and electrochemical behaviour of membrane surfaces. The book looks at membranes - both organic and inorganic - from a host of different perspectives and in the context of many diverse disciplines. It explores the behaviours of both synthetic and biological membranes, employing physical, chemical and physiochemical perspectives, and blends state-of-the-art research of many disciplines into a coherent whole.
Physico-Chemical Analysis of Molten Electrolytes includes selected
topics on the measurement and evaluation of physico-chemical
properties of molten electrolytes. It describes the features,
properties, and experimental measurement of different
physico-chemical properties of molten salt systems used as
electrolytes for different metal production, metallic layer
deposition, as a medium for reactions in molten salts.
This book presents the latest advances in rechargeable lithium-sulfur (Li-S) batteries and provides a guide for future developments in this field. Novel electrode compositions and architectures as well as innovative cell designs are needed to make Li-S technology practically viable. Nowadays, several challenges still persist, such as the shuttle of lithium polysulfides and the poor reversibility of lithium-metal anode, among others. However over the past several years significant progress has been made in the research and development of Li-S batteries. This book addresses most aspects of Li-S batteries and reviews the topic in depth. Advances are summarized and guidance for future development is provided. By elevating our understanding of Li-S batteries to a high level this may inspire new ideas for advancing this technology and making it commercially viable. This book is of interest to the battery community and will benefit graduate students and professionals working in this field
This volume deals with substances in the liquid state that range from high melting salts, such as calcium fluoride, through slags, such as silicates, down to lower melting salts, such as lithium nitrate, molten hydrated salts, such as magnesium chloride hexahydrate, to room temperature ionic liquids, such as 1,3-dimethylimmidazolium tetraphenylborate. It provides the reader with annotated, critically examined, and compiled data for such materials. The data includes a variety of thermochemical, structural, and transport properties. The book includes correlations of measured properties; these correlations should enable the reader to estimate, on a sound basis, properties for ionic liquids that have not yet been measured.
Molecular Magnetism: From Molecular Assemblies to the Devices reviews the state of the art in the area. It is organized in two parts, the first of which introduces the basic concepts, theories and physical techniques required for the investigation of the magnetic molecular materials, comparing them with those used in the study of classical magnetic materials. Here the reader will find: (i) a detailed discussion of the electronic processes involved in the magnetic interaction mechanisms of molecular systems, including electron delocalization and spin polarization effects; (ii) a presentation of the available theoretical models based on spin and Hubbard Hamiltonians; and (iii) a description of the specific physical investigative techniques used to characterize the materials. The second part presents the different classes of existing magnetic molecular materials, focusing on the possible synthetic strategies developed to date to assemble the molecular building blocks ranging from purely organic to inorganic materials, as well as on their physical properties and potential applications. These materials comprise inorganic and organic ferro- and ferrimagnets, high nuclearity organic molecules and magnetic and metallic clusters, spin crossover systems, charge transfer salts (including fulleride salts and organic conductors and superconductors), and organized soft media (magnetic liquid crystals and Langmuir-Blodgett films).
The book presents the method of thermodynamic Green Functions applied to the problems of electrochemistry. The basic theorems and their derivations are found at the didactic level which requires, however, a knowledge of the principles of quantum mechanics and statistical physics. The book is mainly based on the results of papers published during the last fifteen years by its authors and their coworkers from the Department of Theoretical Chemistry and the Department of Solid State Physics of the University ofL6di (poland) within the context of the results reported in literature. Although the Green Functions Method has become very popular in solid state physics, there are almost no applications of this technique to electrochemistry. The only papers where the Green Functions Method is applied to the molten salts and liquid mercury theory are the precursory works published by Professor S. G. Davison and his coworkers from the Waterloo University (Canada) in the early eighties. We hope that the present book can fill this gap in the electrochemical literature.
Electrochemical synthesis of inorganic compounds is a relatively unknown field. The successful, large industrial processes, such as chlorine-caustic production, are well known, but the large number of other compounds that have been synthesized electrochemically are much less appreciated, even by electrochemists and inorganic chemists. The last comprehensive book on this subject was published in the 1930's and no modern review or summary of the whole field is in existence. But the field is in no way dormant, as attested by the large number of publications, undiminished throughout the years, describing new syntheses and improvements of old ones. Indeed, it can be expected that practical applications of electrochemical inor ganic syntheses will increase in the future as an increasing portion of our energy will be available in electrical form. Electrochemical processes have important advantages over chemical routes: often the selectivity of the reaction can be better controlled through the use of potential control at the electrode, and the creation of environmen tally harmful waste material can be avoided more easily since one is using the purest reagent - the electron. In addition to development of new synthetic routes, many old ones, which were found to be un economical in the past, are worth reexamining in light of the recent considerable advances in cell design principles, materials of construc tion, and electrode and separator materials, together with our im proved understanding of electrode reactions and electrocatalysis. It is in the hope of accelerating this process that this bibliography is published."
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued.
This book presents a collection of chapters on modern bioelectrochemistry, showing different aspects of electron transfer reactions in biological systems and techniques. The chapters cover computer simulation, biomolecules on surfaces, direct and mediated electron transfer, electron transfer kinetics, surface-confined biomolecules, field-effect transistor effects, supramolecular electrochemistry, in situ and operando techniques in bioelectrochemistry. They provide relevant bibliographic information for researchers and students interested in computer simulation involving biomolecules on surfaces, processes of direct and mediated electron transfer kinetics of cytochrome c, surface-confined biomolecules for application in bioelectronics, sensitive devices based on field-effect transistors, insights on supramolecular electrochemistry with recent trends and perspectives and technological innovation on instrumentation applied in operando techniques field.
From reviews of previous volumes: 'This volume continues the valuable service that has been rendered by the Modern Aspects series.'-Journal of Electroanalytical Chemistry 'Extremely well referenced and very readable....Maintains the overall high standards of the series.'-Journal of the American Chemical Society
The first edition of this text, entitled Flame and Combustion Phenomena, was published by Professor John Bradley in 1969. Subsequent to John Bradley's untimely death, the second edition, Flame and Combustion, was published in 1985 by Professor John Barnard. The intention of my predecessors was that the book should be suitable for final year under graduates and as an introductory book about combustion phenomena for those involved in research and development in a wide range of disciplines. It is my hope that the same is true of this third edition, with particular attention paid to chemical aspects. The potential market for an introductory text has changed consider ably since the appearance of John Bradley'S monograph. There has been a considerable growth in concern for efficiency, safety and minimisation of the environmental impact of combustion, whereas the development of rocket fuels, explosives and propellants do not command the same intensity of effort as formerly. Thus, it seems prudent to shift the emphasis from some parts of the earlier texts, and to expand others that are more in line with current combustion activities."
This review book is concerned with the synthesis, charge transport properties and practical applications of poly (o-aminophenol) (POAP) film electrodes. It is divided into three parts. The first one has a particular emphasis on problems of synthesis and structure of POAP. The second part deals with the mechanism of charge transfer and charge transport processes occurring in the course of the redox reactions of POAP. The third part describes the promising applications of POAP in the different fields of sensors, electrocatalysis, bioelectrochemistry, corrosion protection, among others. This review covers the literature on POAP in the time period comprised between 1987 and 2013.
The holding of an Advanced Study Institute on the topic of "Solid State Batteries" at this time represented a logical progression in a series of NATO-sponsored events. Summer Schools at Belgerati, Italy in 1972 and Ajaccio, Corsica in 1975 on the topic of "Solid -State IOllics" dealt with fundamental aspects of solid-state electro chemistry and materials science. The application of specific solid ionic conductors played a significant role in the Science Committee Institute on "Materials for Advanced Batteries" held at Aussois, France in 1979. Interest in these and related fields has grown substantially over this period, and is sustained today. Research and development programmes exist within universities, governmental research laboratories and industry, worldwide and a series of international conferences and collaborations have been set up. Advanced batteries, both secondary and primary, have a potentially important role o play in the development of many areas of tech nology in the late 20th century and beyond. Applications include stationary storage, vehicle traction and remote power sources, as well as industrial and domestic cordless products and consumer and military electronics. The concept of an all-so lid-state battery is not new but, until recently, their performance has precluded their use in other than specialist low power, primary, applications. Recent materials' developments, however, make the solid-state battery a real possibility in all of the application sectors mentioned above. Further, such cells offer many attractive features over alternative present-day and advanced systems."
This unique book is at the nexus of modern software programming practices and electrochemical process engineering. It is the authoritative text on developing open source software for many applications, including: * fuel cells; * electrolyzers; and * batteries. Written by experts in the field in the open source computational fluid dynamics (CFD) code suite OpenFOAM, this book is intended for process engineering professionals developing practical electrochemical designs for industry, as well as researchers focused on finding tomorrow's answers today. The book covers everything from micro-scale to cell-scale to stack-scale models, with numerous illustrations and programming examples. Starting from a clear explanation of electrochemical processes and simple illustrative examples, the book progresses in complexity through a range of diverse applications. After reading this book, the reader is able to take command and control of model development as an expert. The book is aimed at all engineers and scientists with basic knowledge of calculus and programming in C++.
The properties of Si02 and the Si-Si02 interface provide the key foundation onto which the majority of semiconductor device technology has been built Their study has consumed countless hours of many hundreds of investigators over the years, not only in the field of semiconductor devices but also in ceramics, materials science, metallurgy, geology, and mineralogy, to name a few. These groups seldom have contact with each other even though they often investigate quite similar aspects of the Si02 system. Desiring to facilitate an interaction between these groups we set out to organize a symposium on the Physics and Chemistry of Si()z and the Si-Si()z Interface under the auspices of The Electrochemical Society, which represents a number of the appropriate groups. This symposium was held at the 173rd Meeting of The Electrochemical Society in Atlanta, Georgia, May 15-20, 1988. These dates nearly coincided with the ten year anniversary of the "International Topical Conference on the Physics of Si02 and its Interfaces" held at mM in 1978. We have modeled the present symposium after the 1978 conference as well as its follow on at North Carolina State in 1980. Of course, much progress has been made in that ten years and the symposium has given us the opportunity to take a multidisciplinary look at that progress.
This book honors Professor. John O'M. Bockris, presenting authoritative reviews on some of the subjects to which he made significant contributions - i.e., electrocatalysis, fuel cells, electrochemical theory, electrochemistry of single crystals, in situ techniques, rechargeable batteries, passivity, and solar-fuels - and revealing the roles of electrochemical science and technology in achieving a sustainable society. Electrochemistry has long been an object of study and is now growing in importance, not only because of its fundamental scientific interest but also because of the central role it is expected to play in a future sustainable society. Professor John O'M. Bockris contributed greatly to various aspects of fundamental and applied electrochemistry - such as the structure of the double layer, kinetics and mechanism of the electrochemistry of hydrogen and oxygen, electrocatalysis, adsorption and electrochemical oxidation of small organic molecules, fuel cells, electrocrystallization, theoretical electrochemistry, new methods, photoelectrochemistry, bioelectrochemistry, corrosion and passivity, hydrogen in metals, ionic solutions and ionic liquids, and molten silicates and glasses, as well as socio-economic issues such as the hydrogen economy - for over half a century from 1945 until his retirement in 1997.
The importance of microelectrodes is widely recognised and interest in their application in diverse areas of research has been increasing over the past ten years. In fact, several meetings organized by the International Society of Electrochemistry, The American Chemical Society and The U. S. Electrochemical Society have analysed various aspects of their theory and applications. For this reason it seemed that the time had arrived when scientists from around the world, actively concerned with research in the area of microelectrodes, should meet, exchange ideas and assess the direction of future developments. Furthermore, it seemed appropriate that this meeting should be held as a NATO Advanced Study Institute, so that students and young scientists with research interests in microelectrodes would have the opportunity to interact with experts in the field, establish future collaboration and, hopefully, catalyse new developments in the area. The meeting was held in Alvor, Portugal, in May 1990. This book compiles the lectures delivered in the Institute. It reviews the most important aspects of microelectrodes and points out directions for future research in this field. Several contributions discuss recent developments in theoretical aspects such as the properties of various geometries and computational procedures for solving the equations describing the coupling of mass transport to microelectrodes with heterogeneous electron tranfer and homogeneous chemistry. The materials and methods available for microelectrodes manufacture are presented in some detail. Both steady state and transient techniques are covered and the interaction of theory with experiment is discussed.
This second, completely updated edition of a classic textbook provides a concise introduction to the fundamental principles of modern electrochemistry, with an emphasis on applications in energy technology. The renowned and experienced scientist authors present the material in a didactically skilful and lucid manner. They cover the physical-chemical fundamentals as well as such modern methods of investigation as spectroelectrochemistry and mass spectrometry, electrochemical analysis and production methods, as well as fuel cells and micro- and nanotechnology. The result is a must-have for advanced chemistry students as well as those studying chemical engineering, materials science and physics.
Researchers and professionals will find a hands-on guide to successful experiments and applications of modern electroanalytical techniques here. The new edition has been completely revised and extended by a chapter on quartz-crystal microbalances. The book is written for chemists, biochemists, environmental and materials scientists, and physicists. A basic knowledge of chemistry and physics is sufficient for understanding the described methods. Electroanalytical techniques are particularly useful for qualitative and quantitative analysis of chemical, biochemical, and physical systems. Experienced experts provide the necessary theoretical background of electrochemistry and thoroughly describe frequently used measuring techniques. Special attention is given to experimental details and data evaluation.
The best available collection of thermodynamic data!The first-of-its-kind in over thirty years, this up-to-date book presents the current knowledgeon Standard Potentials in Aqueous Solution.Written by leading international experts and initiated by the IUPAC Commissions onElectrochemistry and Electroanalytical Chemistry, this remarkable work begins with athorough review of basic concepts and methods for determining standard electrodepotentials. Building upon this solid foundation, this convenient source proceeds to discussthe various redox couples for every known element.The chapters of this practical, time-saving guide are organized in order of the groups ofelements on the periodic table, for easy reference to vital material . AND each chapteralso contains the fundamental chemistry of elements ... numerous equations of chemicalreactions .. . easy-to-read tables of thermodynamic data . . . and useful oxidation-statediagrams.Standard Potentials in Aqueous Solution is an ideal, handy reference for analytical andphysical chemists, electrochemists, electroanalytical chemists, chemical engineers, biochemists,inorganic and organic chemists, and spectroscopists needing information onreactions and thermodynamic data in inorganic chemistry . And it is a valuable supplementarytext for undergraduate- and graduate-level chemistry students. |
![]() ![]() You may like...
|