![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > Electrochemistry & magnetochemistry
The IUTAM Symposium on "Combustion in Supersonic Flows" was held in Poitiers at Ecole Nationale Superieure de Mecanique et d'Aerotechnique (ENSMA) from 2 to 6 october 1995. The Symposium was hosted by the Laboratoire de Combustion et de Detonique (UPR - CNRS 9028) and was attended by 60 delegates from 10 countries. The formal presentations and invited lectures were focused on four main topics, related to combustion in supersonic streams and practical issues relative to the development of new propulsion system: fundamental studies on premixed and unpremixed combustion, fluid dynamic aspects of supersonic combustion, practical system including Scramjet, Ramaccelerators and Pulsed Detonation Engines, application of detonation to propulsion. Invited lectures presenting the state of the art on these topics as well as available data base were delivered by professors Paul A. Libby from University of California at San Diego, Vladimir Sabel'nikov from TsAGI (Russia), Paul Clavin from IRPHE (Marseille, France) and Drs Shmuel Eidelman from SAlC (USA), Gunter Smeets from the French-German Institut of Saint-Louis and Bruno Deshaies from LCD (poi tiers, France).
This book provides a brief research source for optical fiber sensors for energy production and storage systems, discussing fundamental aspects as well as cutting-edge trends in sensing. This volume provides industry professionals, researchers and students with the most updated review on technologies and current trends, thus helping them identify technology gaps, develop new materials and novel designs that lead to commercially viable energy storage systems.
This book highlights the state of the art in solid electrolytes, with particular emphasis on lithium garnets, electrolyte-electrode interfaces and all-solid-state batteries based on lithium garnets. Written by an international group of renowned experts, the book addresses how garnet-type solid electrolytes are contributing to the development of safe high energy density Li batteries. Unlike the flammable organic liquid electrolyte used in existing rechargeable Li batteries, garnet-type solid electrolytes are intrinsically chemically stable in contact with metallic lithium and potential positive electrodes, while offering reasonable Li conductivity. The book's respective chapters cover a broad spectrum of topics related to solid electrolytes, including interfacial engineering to resolve the electrolyte-electrode interfaces, the latest developments in the processing of thin and ultrathin lithium garnet membranes, and fabrication strategies for the high-performance solid-state batteries.This highly informative and intriguing book will appeal to postgraduate students and researchers at academic and industrial laboratories with an interest in the advancement of high energy-density lithium metal batteries
This book provides a comprehensive review of functional nanomaterials for electrochemical applications, presenting interesting examples of nanomaterials with different dimensions and their applications in electrochemical energy storage. It also discusses the synthesis of functional nanomaterials, including quantum dots; one-dimensional, two-dimensional and three-dimensional nanostructures; and advanced nanocomposites. Highlighting recent advances in current electrochemical energy storage hotpots: lithium batteries, lithium-ion batteries, sodium-ion batteries, other metal-ion batteries, halogen ion batteries, and metal-gas batteries, this book will appeal to readers in the various fields of chemistry, material science and engineering.
Written by the inventors and leading experts of this new field, the book results from the International Symposium on "Atomic Switch: Invention, Practical use and Future Prospects" which took place in Tsukuba, Japan on March 27th - 28th, 2017. The book chapters cover the different trends from the science and technology of atomic switches to their applications like brain-type information processing, artificial intelligence (AI) and completely novel functional electronic nanodevices. The current practical uses of the atomic switch are also described. As compared with the conventional semiconductor transistor switch, the atomic switch is more compact (~1/10) with much lower power consumption (~1/10) and scarcely influenced by strong electromagnetic noise and radiation including cosmic rays in space (~1/100). As such, this book is of interest to researchers, scholars and students willing to explore new materials, to refine the nanofabrication methods and to explore new and efficient device architectures.
This book introduces readers to the fundamental physics and chemistry of the proton exchange membrane fuel cell (PEMFC), followed by discussions on recent advances in low platinum electrocatalysis and related catalyst development for PEMFC (the book's primary focus), methods of membrane electrode assembly (MEA) fabrication for low platinum catalysts, and durability issues in connection with MEA. While energy and environmental issues are becoming the two main subjects in global sustainable development, the proton exchange membrane fuel cell (PEMFC), a clean and efficient new energy technology, has attracted more and more attention in recent years The major hurdle for more extensive applications of the PEMFC, especially for the automotive sector, is the high platinum loading requirement. Readers will gain a comprehensive understanding of the fundamentals and methods of low platinum PEMFC. This book is intended for researchers, engineers and graduate students in the fields of new energy technology, the fuel cell vehicle industry and fuel cell design.
Modelling of heterogeneous processes, such as electrochemical
reactions, extraction or ion-exchange, usually requires solving the
transport problem associated to the process. Since the processes at
the phase boundary are described by scalar quantities and transport
quantities are vectors or tensors, coupling of them can take place
only via conservation of mass, charge or momentum. In this book,
transport of ionic species is addressed in a versatile manner,
emphasizing the mutual coupling of fluxes in particular. Treatment
is based on the formalism of irreversible thermodynamics, i.e. on
linear (ionic) phenomenological equations, from which the most
frequently used Nernst-Planck equation is derived. Limitations and
assumptions made are thoroughly discussed.
This book provides detailed information on the electrochemistry of technetium compounds. After a brief physico-chemical characterization of this element, it presents the comparative chemistry of technetium, manganese and rhenium. Particular attention is paid to the stability, disproportionation, comproportionation, hydrolysis and polymerization reactions of technetium ions and their influence on the observed redox systems. The electrochemical properties of both inorganic as well as organic technetium species in aqueous and non-aqueous solutions are also discussed. The respective chapters cover the whole spectrum of topics related to the application of technetium in nuclear medicine, electrochemistry of technetium in spent nuclear fuel (including corrosion properties of technetium alloys), and detecting trace amounts of technetium with the aid of electrochemical methods. Providing readers with information not easily obtained in any other single source, the book will appeal to researchers working in nuclear chemistry, nuclear medicine or the nuclear industry.
Volume 41 of the prominent series Modern Aspects of Electrochemistry covers a range of topics in Electrochemistry and Electrochemical Engineering. The topics include the second chapter on the survey of experimental techniques and devices of solid state electrochemistry begun by Professor Joachim Maier in Volume 39. Chapter two contains a review of synthesis and characterization of nanoporous carbons and their electrochemical applications. The next chapter reviews and discusses the use of graphs in the study of chemical reaction network. The book also reviews and discusses mathematical models of three dimensional electrode structures.
This book is a concise introductory guide to understanding the foundations of electrochemistry. By using simplified classroom-tested methods developed while teaching the subject to engineering students, the author explains in simple language an otherwise complex subject that can be difficult to master for most. It provides readers with an understanding of important electrochemical processes and practical industrial applications, such as electrolysis processes, metal electrowinning, corrosion and analytical applications, and galvanic cells such as batteries, fuel cells, and supercapacitors. This powerful tutorial is a great resource for students, engineers, technicians, and other busy professionals who need to quickly acquire a solid understanding of the science of electrochemistry.
This important review series began in 1954 at Academic Press. The latest volume deals with scanning tunneling microscopy, the nickel oxide electrode, radioactive labeling as an in situ method of characterization of solid/liquid interfaces, metallic glasses, reaction kinetics and mechanisms, and DC r
This book introduces the synthesis and modification of 3D hierarchical porous graphene materials and presents various applications of it. By directly constructing a 3D graphene framework with sp2 hybridization and hierarchical porosity, this book is aimed to bridge the gap between 2D ideal nanostructure and 3D practical materials by systematically studying the growth mechanism, synthetic methodology, customized application, and system promotion of 3D hierarchical porous graphene (hpG) materials. The achievements presented offer a valuable contribution to the fundamental research and the industrial development of graphene with significantly improved performance and also inspire further research into various nanomaterials beyond graphene.
This thesis introduces the preparation of a series of Mg-based thin films with different structures using magnetron sputtering, as well as the systematical investigation of their gaseous and electrochemical hydrogen storage properties under mild conditions. It reviews promising applications of Mg-based thin films in smart windows, hydrogen sensors and Ni-MH batteries, while also providing significant insights into research conducted on Mg-based hydrogen storage materials, especially the Mg-based films. Moreover, the unique experimental procedures and methods (including electric resistance, optical transmittance and electrochemical methods) used in this thesis will serve as a valuable reference for researchers in the field of Mg-based hydrogen storage films.
This book covers the fundamental aspects of the electrochemistry and redox enzymes that underlie enzymatic bioelectrocatalysis, in which a redox enzyme reaction is coupled with an electrode reaction. Described here are the basic concept and theoretical aspects of bioelectrocatalysis and the various experimental techniques and materials used to study and characterize related problems. Also included are the various applications of bioelectrocatalysis to bioelectrochemical devices including biosensors, biofuel cells, and bioreactors. This book is a unique source of information in the area of enzymatic bioelectrocatalysis, approaching the subject from a cross-disciplinary point of view.
This book describes the physical basis of polarization modulation infrared reflection-absorption spectroscopy and its application in electrochemical studies. It provides a concise yet comprehensive review of the research done in this field in the last 20 years. Electrochemical methods are used to determine the rate and mechanism of charge transfer reactions between an electrode and species adsorbed or diffusing to its surface. In the past two decades PM-IRRAS has grown to be one of the most important vibrational spectroscopy techniques applied to investigate structural changes taking place at the electrochemical interface. The monograph presents foundations of this technique and reviews in situ studies of redox-inactive and redox-active films adsorbed on electrode surfaces. It also discusses experimental conditions required in electrochemical and spectroscopic studies and presents practical solutions to perform efficient experiments. As such, it offers an invaluable resource for graduate and postgraduate students, as well as for all researchers in academic and industrial laboratories.
Lithium-Ion Battery Chemistries: A Primer offers a simple description on how different lithium-ion battery chemistries work, along with their differences. It includes a refresher on the basics of electrochemistry and thermodynamics, and an understanding of the fundamental processes that occur in the lithium-ion battery. Furthermore, it reviews each of the major chemistries that are in use today, including Lithium-Iron Phosphate (LFP), Lithium-Cobalt Oxide (LCO), Lithium Manganese Oxide (LMO), Lithium-Nickel Manganese Cobalt (NMC), Lithium-Nickel Cobalt Aluminium (NCA), and Lithium-Titanate Oxide (LTO) and outlines the different types of anodes, including carbon (graphite, hard carbon, soft carbon, graphene), silicon, and tin. In addition, the book offers performance comparisons of different chemistries to help users select the right battery for the right application and provides explanations on why different chemistries have different performances and capabilities. Finally, it offers a brief look at emerging and beyond-lithium chemistries, including lithium-air, zinc-air, aluminum air, solid-state, lithium-sulfur, lithium-glass, and lithium-metal.
This book combines two areas of intense interest: nanotechnology, and energy conversion and storage devices. In particular, Li-ion batteries have enjoyed conspicuous success in many consumer electronic devices and their projected use in vehicles that will revolutionize the way we travel in the near future. For many applications, Li-ion batteries are the battery of choice. This book consolidates the scattered developments in all areas of research related to nanotechnology and lithium ion batteries.
This book is devoted to CO2 capture and utilization (CCU) from a green, biotechnological and economic perspective, and presents the potential of, and the bottlenecks and breakthroughs in converting a stable molecule such as CO2 into specialty chemicals and materials or energy-rich compounds. The use of renewable energy (solar, wind, geothermal, hydro) and non-fossil hydrogen is a must for converting large volumes of CO2 into energy products, and as such, the authors explore and compare the availability of hydrogen from water using these sources with that using oil or methane. Divided into 13 chapters, the book offers an analysis of the conditions under which CO2 utilization is possible, and discusses CO2 capture from concentrated sources and the atmosphere. It also analyzes the technological (non-chemical) uses of CO2, carbonation of basic minerals and industrial sludge, and the microbial-catalytic-electrochemical-photoelectrochemical-plasma conversion of CO2 into chemicals and energy products. Further, the book provides examples of advanced bioelectrochemical syntheses and RuBisCO engineering, as well as a techno-energetic and economic analysis of CCU. Written by leading international experts, this book offers a unique perspective on the potential of the various technologies discussed, and a vision for a sustainable future. Intended for graduates with a good understanding of chemistry, catalysis, biotechnology, electrochemistry and photochemistry, it particularly appeals to researchers (in academia and industry) and university teachers.
Tailored Thin Coatings for Corrosion Inhibition Using a Molecular Approach discusses the fundamentals and applications of various thin coatings for the inhibition of fouling and corrosion from a molecular perspective. It provides the reader with a fundamental understanding of why certain coatings perform better than others in a given environment. Surface analytical and electrochemical techniques in understanding the coating performance are emphasized throughout the book, providing readers with a useful reference on how to pursue a systematic corrosion inhibitor R&D program that involves the testing of coating performance using various, currently available, state-of-the-art laboratory techniques. Wherever relevant, environmental considerations of the discussed coatings' technologies are highlighted and discussed, with current and upcoming regulatory trends put forth by different governmental organizations.
This thesis outlines the investigation of various electrode materials for Li-ion battery (LIB) applications. Li-ion batteries are widely used in various portable electronic devices owing to their compactness, light weight, longer life, design flexibility and environment friendliness. This work describes the detailed synthesis and structural studies of various novel phosphate based cathode materials and reduced graphene oxide (rGO) composites as anode materials. Their electrochemical characterization as electrode for LIBs has been investigated in detail. The thesis also includes a comprehensive introduction for non-specialists in this field. The research could benefit and will appeal to scientists, especially new researchers working in the field of energy storage.
This book explores key parameters, properties and fundamental concepts of electrocatalysis. It also discusses the engineering strategies, current applications in fuel-cells, water-splitting, metal-ion batteries, and fuel generation. This book elucidates entire category viewpoints together with industrial applications. Therefore, all the sections of this book emphasize the recent advances of different types of electrocatalysts, current challenges, and state-of-the-art studies through detailed reviews. This book is the result of commitments by numerous experts in the field from various backgrounds and expertise and appeals to industrialists, researchers, scientists and in addition understudies from various teaches.
This book addresses a range of solutions and effective control techniques for Microbial Fuel Cells (MFCs), intended as a response to the increased energy consumption and wastewater production stemming from globalization. It describes the fundamentals of MFCs and control-oriented mathematical models, and provides detailed information on uncertain parameters. Various control techniques like robust control with LMI, adaptive backstepping control, and exact linearization control are developed for different mathematical models. In turn, the book elaborates on the basics of adaptive control, presenting several methods in detail. It also demonstrates how MFCs can be developed at the laboratory level, equipping readers to develop their own MFCs for experimental purposes. In closing, it develops a transfer function model for MFCs by combining a system identification technique and model reference adaptive control techniques. By addressing one of the most promising sources of clean and renewable energy, this book provides a viable solution for meeting the world's increasing energy demands.
This book explains how the partial differential equations (pdes) in electroanalytical chemistry can be solved numerically. It guides the reader through the topic in a very didactic way, by first introducing and discussing the basic equations along with some model systems as test cases systematically. Then it outlines basic numerical approximations for derivatives and techniques for the numerical solution of ordinary differential equations. Finally, more complicated methods for approaching the pdes are derived. The authors describe major implicit methods in detail and show how to handle homogeneous chemical reactions, even including coupled and nonlinear cases. On this basis, more advanced techniques are briefly sketched and some of the commercially available programs are discussed. In this way the reader is systematically guided and can learn the tools for approaching his own electrochemical simulation problems. This new fourth edition has been carefully revised, updated and extended compared to the previous edition (Lecture Notes in Physics Vol. 666). It contains new material describing migration effects, as well as arrays of ultramicroelectrodes. It is thus the most comprehensive and didactic introduction to the topic of electrochemical simulation. |
You may like...
Better Choices - Ensuring South Africa's…
Greg Mills, Mcebisi Jonas, …
Paperback
The Land Is Ours - Black Lawyers And The…
Tembeka Ngcukaitobi
Paperback
(11)
Indentured - Behind The Scenes At Gupta…
Rajesh Sundaram
Paperback
(2)
|