![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry > Electrochemistry & magnetochemistry
All-solid-state batteries have gained much attention as the next-generation batteries. This book is about various Li ion ceramic electrolytes and their applications to all-solid-state battery. It contains a wide range of topics from history of ceramic electrolytes and ion conduction mechanisms to recent research achievements. Here oxide-type and sulfide-type ceramic electrolytes are described in detail. Additionally, their applications to all-solid-state batteries, including Li-air battery and Li-S battery, are reviewed.Consisting of fundamentals and advanced technology, this book would be suitable for beginners in the research of ceramic electrolytes; it can also be used by scientists and research engineers for more advanced development.
This book summarizes the electrochemical routes of nanostructure preparation in a systematic and didactic manner. It provides a comprehensive overview of electrodeposition, anodization, carbon nanotube preparation and other methods of nanostructure fabrication, combining essential information on the physical background of electrochemistry with materials science aspects of the field. The book includes a brief introduction to general electrochemistry with an emphasis on physico-chemical aspects, followed by a description of the sample preparation methods. In each chapter, an overview of the particular method is accompanied by a discussion of the relevant physical or chemical properties of the materials, including magnetic, mechanical, optical, catalytic, sensoric and other features. While some preparation methods are discussed in connection with the theories of physical electrochemistry (e.g. electrodeposition), the book also covers methods that are more heuristic but nonetheless utilize electric current (e.g. anodization of porous alumina or synthesis of carbon nanotubes by means of electric arc discharge).
Handbook of Magnetic Materials, Volume 26, covers the expansion of magnetism over the last few decades and its applications in research, notably the magnetism of several classes of novel materials that share the presence of magnetic moments with truly ferromagnetic materials. The book is an ideal reference for scientists active in magnetism research, providing readers with novel trends and achievements in magnetism. Each article contains an extensive description given in graphical, as well as, tabular form, with much emphasis placed on the discussion of the experimental material within the framework of physics, chemistry and material science.
The latest edition of a classic textbook in electrochemistry The third edition of Electrochemical Methods has been extensively revised to reflect the evolution of electrochemistry over the past two decades, highlighting significant developments in the understanding of electrochemical phenomena and emerging experimental tools, while extending the book's value as a general introduction to electrochemical methods. This authoritative resource for new students and practitioners provides must-have information crucial to a successful career in research. The authors focus on methods that are extensively practiced and on phenomenological questions of current concern. This latest edition of Electrochemical Methods contains numerous problems and chemical examples, with illustrations that serve to illuminate the concepts contained within in a way that will assist both student and mid-career practitioner. Significant updates and new content in this third edition include: An extensively revised introductory chapter on electrode processes, designed for new readers coming into electrochemistry from diverse backgrounds New chapters on steady-state voltammetry at ultramicroelectrodes, inner-sphere electrode reactions and electrocatalysis, and single-particle electrochemistry Extensive treatment of Marcus kinetics as applied to electrode reactions, a more detailed introduction to migration, and expanded coverage of electrochemical impedance spectroscopy The inclusion of Lab Notes in many chapters to help newcomers with the transition from concept to practice in the laboratory The new edition has been revised to address a broader audience of scientists and engineers, designed to be accessible to readers with a basic foundation in university chemistry, physics and mathematics. It is a self-contained volume, developing all key ideas from the fundamental principles of chemistry and physics. Perfect for senior undergraduate and graduate students taking courses in electrochemistry, physical and analytical chemistry, this is also an indispensable resource for researchers and practitioners working in fields including electrochemistry and electrochemical engineering, energy storage and conversion, analytical chemistry and sensors.
Fuel Cells is a concise, up-to-date and accessible guide to the evolution of the use of electrochemistry to generate power. The author provides a comprehensive exploration of the history of fuel cells, the environmental concerns which came into prominence in the 1980s and the economic factors associated with this method of power generation. Examples discussed include Alkaline Fuel Cells, Phosphoric Acid Fuel Cells, Molton Carbonate Fuel Cells and Solid Oxide Fuel Cells, making this a valuable and insightful read for those in the power generation market and those in electrochemistry, such as engineers, managers and academics.
Number 25 of this acclaimed series breaks new ground with articles on charge transfer across liquid-liquid interfaces, electrochemical techniques to study hydrogen ingress in metals, and electrical breakdown of liquids. Also included are articles on the measurement of corrosion and ellipsometry, bringing these older subjects up to date.
This book documents Professor Jacques Simonet's contribution to building new electrode materials and their related catalytic reactions. Research includes synthesis of new alloys of palladium, discovery of new composite electrodes (including gold- and silver-graphene) and the creation of new materials through judicious cathodic or anodic doping. Additionally, studies demonstrate the malleability and reactivity of previously unused precious and semi-precious metals for the creation of 2D and 3D catalytic materials. Studies key to innovative research show how transition metals may reversibly cathodically insert small size electro-active molecules such as CO2 and O2, and be applied to methods of depollution brought by carbon and nitrogen oxides.Written for practical use, Simonet has provided both theory and tools needed for those aiming to recreate and develop his experiments in electrochemical catalysis and surface modifications. This full publication of research gives graduate and post-graduate students of chemistry, electrochemistry and catalysis an in-depth insight into key historical and modern developments in the field.
This book is designed to collect and review the research covering main directions in investigations of aromatic nitroso compounds in last decades, and to present both, the academic aspects of this chemistry, as well as the open field of its applicability. The book is divided in five chapters. The basic structural properties of the nitroso aromatic molecules are described in the first chapter. The second chapter is an overview of the methods of preparations of aromatic nitroso and polynitroso compounds, including classical synthetic methods and some new preparative approaches. The third part deals with the physico-chemical properties of nitroso aromates and azodioxides, its structure, crystallography, quantum chemical calculations, spectroscopy, typical reactions, and especially it is focused on the dimerizations in the solid-state. In the fourth chapter is represented organometallic chemistry of nitroso aromatic molecules and its applications in catalysis. The last part of the book deals with the behavior of this class of compounds in the biological systems, reactions with biomolecules and the use in toxicology.
This book presents an overview of the current state of research on ultrashort electric field pulses of high intensity and their use in biology and medicine. It examines in detail the most recent and exciting advances in how nanosecond and picosecond electric pulse research has grown and expanded into new areas of biology and medicine. Further, the book specifically focuses on electric pulses in the time domain, on intracellular effects as opposed to plasma membrane electroporation, and highlights the biological and medical applications of these unique pulse effects. Since the authors were initial innovators exploring nanosecond and picosecond pulses, their unique perspectives foreshadowed directions the research took, expanding into new areas that they continue to investigate today.
This edited volume, with contributions from the Computer Aided Engineering for Batteries (CAEBAT) program, provides firsthand insights into nuances of implementing battery models in actual geometries. It discusses practical examples and gaps in our understanding, while reviewing in depth the theoretical background and algorithms. Over the last ten years, several world-class academics, automotive original equipment manufacturers (OEMs), battery cell manufacturers and software developers worked together under an effort initiated by the U.S. Department of Energy to develop mature, validated modeling tools to simulate design, performance, safety and life of automotive batteries. Until recently, battery modeling was a niche focus area with a relatively small number of experts. This book opens up the research topic for a broader audience from industry and academia alike. It is a valuable resource for anyone who works on battery engineering but has limited hands-on experience with coding.
Transparent conducting materials are key elements in a wide variety of current technologies including flat panel displays, photovoltaics, organic, low-e windows and electrochromics. The needs for new and improved materials is pressing, because the existing materials do not have the performance levels to meet the ever- increasing demand, and because some of the current materials used may not be viable in the future. In addition, the field of transparent conductors has gone through dramatic changes in the last 5-7 years with new materials being identified, new applications and new people in the field. "Handbook of Transparent Conductors" presents transparent conductors in a historical perspective, provides current applications as well as insights into the future of the devices. It is a comprehensive reference, and represents the most current resource on the subject.
This reference brings together, for the first time, information on the electrochemical and physicochemical properties of carbon that are relevant to the understanding of its electrochemical behavior. The book is divided into three major sections. The first section reviews the manufacture and physicochemical properties of commercial carbons. The second section presents a discussion on the characteristics and types of carbon electrodes. The third section explores the wide range of applications of carbon in electrochemical systems. Features many tables and figures, as well as numerous references.
Biosensors and Bioelectronics presents the rapidly evolving methodologies that are relevant to biosensors and bioelectronics fabrication and characterization. The book provides a comprehensive understanding of biosensor functionality, and is an interdisciplinary reference that includes a range of interwoven contributing subjects, including electrochemistry, nanoparticles, and conducting polymers. Authored by a team of bioinstrumentation experts, this book serves as a blueprint for performing advanced fabrication and characterization of sensor systems-arming readers with an application-based reference that enriches the implementation of the most advanced technologies in the field.
This book presents selected peer-reviewed contributions from the 2017 International Conference on "Physics and Mechanics of New Materials and Their Applications", PHENMA 2017 (Jabalpur, India, 14-16 October, 2017), which is devoted to processing techniques, physics, mechanics, and applications of advanced materials. The book focuses on a wide spectrum of nanostructures, ferroelectric crystals, materials and composites as well as promising materials with special properties. It presents nanotechnology approaches, modern environmentally friendly piezoelectric and ferromagnetic techniques and physical and mechanical studies of the structural and physical-mechanical properties of materials. Various original mathematical and numerical methods are applied to the solution of different technological, mechanical and physical problems that are interesting from theoretical, modeling and experimental points of view. Further, the book highlights novel devices with high accuracy, longevity and extended capabilities to operate under wide temperature and pressure ranges and aggressive media, which show improved characteristics, thanks to the developed materials and composites, opening new possibilities for different physico-mechanical processes and phenomena.
Ionic Liquids in Separation Technology reports on the most important fundamental and technological advances in separation processes using ionic liquids. It brings together the latest developments in this fascinating field, supplements them with numerous practical tips, and thus provides those working in both research and industry with an indispensable source of information. The book covers fundamental topics of physical, thermal, and optical properties of ionic liquids, including green aspects. It then moves on to contexts and applications, including separation of proteins, reduction of environmental pollutants, separation of metal ions and organic compounds, use in electrochromic devices, and much more. For the specialist audience the book serves as a recompilation of the most important knowledge in this field, whereas for starting researchers in ionic liquid separation technology the book is a great introduction to the field.
Many chemical processes that are important to society take place at boundaries between phases. Understanding these processes is critical in order for them to be subject to human control. The building of theoretical or computational models of them puts them into a theoretical framework in terms of which the behavior of the system can be understood on a detailed level. Theoretical and computational models are often capable of giving descriptions of interfacial phenomena that are more detailed, on a molecular level, than can be obtained through experimental observation. Advances in computer hardware have also made possible the treatment of larger and chemically more interesting systems. The study of interfacial phenomena is a multi-disciplinary endeavor which requires collaboration and communication among researchers in different fields and across different types of institutions. Because there are many important problems in this field much effort is being expended to understand these processes by industrial laboratories as well as by groups at universities. Our conference titled "Theoretical and Computational Approaches to Interface Phenomena" held at South Dakota State University, August 2-4, 1993 brought together over thirty scientists from industry and academia and three countries in the western hemisphere to discuss the modeling of interfacial phenomena.
This invaluable book focuses on the mechanisms of formation of a solid-electrolyte interphase (SEI) on the electrode surfaces of lithium-ion batteries. The SEI film is due to electrochemical reduction of species present in the electrolyte. It is widely recognized that the presence of the film plays an essential role in the battery performance, and its very nature can determine an extended (or shorter) life for the battery. In spite of the numerous related research efforts, details on the stability of the SEI composition and its influence on the battery capacity are still controversial. This book carefully analyzes and discusses the most recent findings and advances on this topic.
This book explores the applications of ferroelectric materials in information technology by developing several prototype devices based on Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) single crystals. It describes how an optothermal field-effect transistor (FET) was constructed on the PMN-26PT single crystal, using a MoS2 monolayer as the channel semiconductor material. This fusion of pyroelectric effect and the interface engineering of 2D materials provides an effective strategy for the 'photon revolution' of FET. An ultra-broadband photodetector (UV ~ THz) was monolithically integrated into a [111]-oriented PMN-28PT single crystal by using silver nanowires in the transparent top electrode. The photodetector showed a dramatic improvement in operation frequency up to 3 kHz: an order of magnitude higher than that of traditional pyroelectric photodetectors. A self-powered integrated module was demonstrated through the combination of a triboelectric nanogenerator and a ferroelectric FET. The stored information can easily be written in the memory system using mechanical energy, solving the power consumption problem with regard to information writing in ferroelectric nonvolatile memories. This book extends the applications of ferroelectric single crystals into areas other than piezoelectric devices, paving the way for exciting future developments.
The latest volume of reviews by researchers in academic and industrial laboratories contains five chapters. They cover a surface-science approach to the semiconductor/electrolyte interface, photovoltaic and photo-electrochemical cells based on Schottky barrier heterojunctions, the mechanisms of form
Do not learn the tricks of the trade, learn the trade I started teachinggraduate coursesin chemical sensors in early 1980s, ?rst as a o- quarter (30 h) class then as a semester course and also as several intensive, 4-5-day courses. Later I organized my lecture notes into the ?rst edition of this book, which was published by Plenum in 1989 under the title Principles of Chemical Sensors. I started working on the second edition in 2006. The new edition of Principles of Chemical Sensors is a teaching book, not a textbook. Let me explain the difference. Textbooks usually cover some more or less narrow subject in maximum depth. Such an approach is not possible here. The subject of chemical sensors is much too broad, spanning many aspects of physical and analytical chemistry, biochemistry, materials science, solid-state physics, optics, device fabrication, electrical engine- ing, statistical analysis, and so on. The challengefor me has been to present uniform logical coverage of such a large area. In spite of its relatively shallow depth, it is intended as a graduate course. At its present state the amount of material is more thancan be coveredin a one-semestercourse (45h). Two one-quartercourseswould be more appropriate. Because of the breadth of the material, the sensor course has a somewhat unexpected but, it is hoped, bene?cial effect.
The first book to present a systematic approach to nanosystems Fully supplemented with actual examples and scores of figures and photo illustrations, Integrated Chemical Systems takes the discussion of nanotechnology and nanosystems out of the realm of speculation and into the real world. This book presents a detailed discussion of various approaches to the fabrication and characterization of nanosystems and offers a firm theoretical basis for the operation of electrochemical and photoelectrochemical systems, making analogies between synthetic and naturally occurring nanosystems. The author uses examples taken from his own groundbreaking research and that of others to create a clear picture of the progress that has been made in this exciting new area of research. Having established the state of the art, he goes on to offer realistic projections of future systems and their applications. Topics discussed include:
This book presents the advances in abrasive based machining and finishing in broad sense. Specifically, the book covers the novel machining and finishing strategies implemented in various advanced machining processes for improving machining accuracy and overall quality of the product. This book presents the capability of advanced machining processes using abrasive grain. It also covers ways for enhancing the production rate as well as quality. It fulfills the gap between the production of any complicated components and successful machining with abrasive particles.
Traditionally, magnetic materials have been metals or, if inorganic compounds such as oxides, of continuous lattice type. However, in recent years chemists have synthesized increasing numbers of crystalline solids based on molecular building blocks in the form of coordination and organometallic complexes or purely organic molecules, which exhibit spontaneous magnetization. In striking contrast to conventional magnets, these materials are made from solutions close to room temperature rather than by metallurgical or ceramic methods. This book, which originates from contributions to a Discussion Meeting of The Royal Society of London, brings together many of the leading international practitioners in the field, who survey their own recent work and place it in the context of the wider fields of magnetism and supramolecular chemistry. All aspects of molecular-based magnets are addressed, including synthesis, structure-property relations and physical properties. Contents include details of the characterization of the first purely organic ferromagnet, the synthesis of high coercivity materials and a unique description of new materials with Curie temperatures well above ambient. A coherent survey of this rapidly developing field for the more general reader, Metal-Organic and Organic Molecular Magnets will also be welcomed by researchers and lecturers in materials science and inorganic or solid state chemistry.
This book commemorates the "Nobel Laureate Professor Suzuki Special Symposium" at the International Union of Material Research Society-International Conference on Advanced Materials (IUMRS-ICAM2017), which was held at Kyoto University, Japan, in 2017. The book begins with a foreword by Professor Akira Suzuki. Subsequently, many authors who attended the special symposium describe the latest scientific advances in the field of carbon materials and carbon nanomaterials including polymers, carbon nanocomposites, and graphene. Carbon-based materials have recently been the focus of considerable attention, given their wide range of potential applications. Fittingly, the chapters in this book cover both experimental and theoretical approaches in several categories of carbon-related materials. |
![]() ![]() You may like...
|