Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Chemistry > Physical chemistry > Electrochemistry & magnetochemistry
This thesis describes in-depth theoretical efforts to understand the reaction mechanism of graphite and lithium metal as anodes for next-generation rechargeable batteries. The first part deals with Na intercalation chemistry in graphite, whose understanding is crucial for utilizing graphite as an anode for Na-ion batteries. The author demonstrates that Na ion intercalation in graphite is thermodynamically unstable because of the unfavorable Na-graphene interaction. To address this issue, the inclusion of screening moieties, such as solvents, is suggested and proven to enable reversible Na-solvent cointercalation in graphite. Furthermore, the author provides the correlation between the intercalation behavior and the properties of solvents, suggesting a general strategy to tailor the electrochemical intercalation chemistry. The second part addresses the Li dendrite growth issue, which is preventing practical application of Li metal anodes. A continuum mechanics study considering various experimental conditions reveals the origins of irregular growth of Li metal. The findings provide crucial clues for developing effective counter strategies to control the Li metal growth, which will advance the application of high-energy-density Li metal anodes.
This book discusses the roles of nanostructures and nanomaterials in the development of battery materials for state-of-the-art electrochemical energy storage systems, and provides detailed insights into the fundamentals of why batteries need nanostructures and nanomaterials. It explores the advantages offered by nanostructure electrode materials, the challenges of using nanostructured materials in batteries, as well as the rational design of nanostructures and nanomaterials to achieve optimal battery performance. Further, it closely examines the latest advances in the application of nanostructures and nanomaterials for future rechargeable batteries, including high-energy and high-power lithium ion batteries, lithium metal batteries (Li-O2, Li-S, Li-Se, etc.), all-solid-state batteries, and other metal batteries (Na, Mg, Al, etc.). It is a valuable reference resource for readers interested in or involved in research on energy storage, energy materials, electrochemistry and nanotechnology.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
This monograph evolved over the past five years. It had its origin as a set of lecture notes prepared for the Ninth Summer School of Mathematical Physics held at Ravello, Italy, in 1984 and was further refined in seminars and lectures given primarily at the University of Colorado. The material presented is the product of a single mathematical question raised by Dave Kassoy over ten years ago. This question and its partial resolution led to a successful, exciting, almost unique interdisciplinary col laborative scientific effort. The mathematical models described are often times deceptively simple in appearance. But they exhibit a mathematical richness and beauty that belies that simplicity and affirms their physical significance. The mathe matical tools required to resolve the various problems raised are diverse, and no systematic attempt is made to give the necessary mathematical background. The unifying theme of the monograph is the set of models themselves. This monograph would never have come to fruition without the enthu siasm and drive of Dave Eberly-a former student, now collaborator and coauthor-and without several significant breakthroughs in our understand ing of the phenomena of blowup or thermal runaway which certain models discussed possess. A collaborator and former student who has made significant contribu tions throughout is Alberto Bressan. There are many other collaborators William Troy, Watson Fulks, Andrew Lacey, Klaus Schmitt-and former students-Paul Talaga and Richard Ely-who must be acknowledged and thanked."
As carbons are widely used in energy storage and conversion systems, there is a rapidly growing need for an updated book that describes their physical, chemical, and electrochemical properties. Edited by those responsible for initiating the most progressive conference on Carbon for Energy Storage and Environment Protection (CESEP), this book undoubtedly fills this need. Written in collaboration with prominent scientists in carbon science and its energy-related applications, Carbons for Electrochemical Energy Storage and Conversion Systems provides the most complete and up-to-date coverage available on carbon materials for application in electrochemical energy storage and conversion. The text studies different carbon materials and their detailed physicochemical properties and provides an in-depth review of their wide-ranging applications-including lithium-ion batteries, supercapacitors, fuel cells, and primary cells. Recognizing that most scientists involved with these applications are materials scientists rather than electrochemists, the text begins with a review of electrochemical principles and methods. It then covers the different forms of traditional sp2 carbons, introduces novel techniques for preparing advanced carbons, and describes the main physicochemical properties which control the electrochemical behavior of carbons. The second half of the book focuses on research and provides a wealth of original information on industrial applications. Complete with an abundance of figures, tables, equations, and case studies, this book is the ideal one-stop reference for researchers, engineers, and students working on developing the carbon-based energy storage and conversion systems of tomorrow.
This book focuses on water content estimation and control of the PEM fuel cell stack and the individual cell in vehicle. Firstly, the mathematical connection between polarization curve and equivalent circuit model proves importance of MEA and its feasibility to study water content. Optimizing structure of MEA realizes the internal water content recirculation of a fuel cell and improves its performance under middle or lower current density. The influence of water content on performance of MEA is quantified, and variation of equivalent circuit model is an excellent indicator of water content. Secondly, the comprehensive online AC impedance measurement method is put forward, including current excitation method, weak voltage and current signal processing method, and method for analyzing measurement error, and experiment validates measurement accuracy. The high-frequency impedance and statistical characteristic are proposed as indicator of water content. Finally, the dynamic model of the air supply system of a fuel cell engine is established and the closed-loop control of the air supply system and the water content estimation are decoupled. The experiment on a fuel cell system validates the proposed method for searching optimized operating conditions and the water management strategy.
The power of electrochemical measurements in respect of thermodynamics, kinetics and analysis is widely recognised but the subject can be unpredictable to the novice even if they have a strong physical and chemical background, especially if they wish to pursue quantitative measurements. Accordingly, some significant experiments are perhaps wisely never attempted while the literature is sadly replete with flawed attempts at rigorous voltammetry.This textbook considers how to implement designing, explaining and interpreting experiments centered on various forms of voltammetry (cyclic, microelectrode, hydrodynamic, etc.). The reader is assumed to have knowledge of physical chemistry equivalent to Master's level but no exposure to electrochemistry in general, or voltammetry in particular. While the book is designed to stand alone, references to important research papers are given to provide an introductory entry into the literature.The third edition contains new material relating to electron transfer theory, experimental requirements, scanning electrochemical microscopy, adsorption, electroanalysis and nanoelectrochemistry.
All-solid-state batteries have gained much attention as the next-generation batteries. This book is about various Li ion ceramic electrolytes and their applications to all-solid-state battery. It contains a wide range of topics from history of ceramic electrolytes and ion conduction mechanisms to recent research achievements. Here oxide-type and sulfide-type ceramic electrolytes are described in detail. Additionally, their applications to all-solid-state batteries, including Li-air battery and Li-S battery, are reviewed.Consisting of fundamentals and advanced technology, this book would be suitable for beginners in the research of ceramic electrolytes; it can also be used by scientists and research engineers for more advanced development.
This textbook discusses the latest advances in the corrosion of metals and related protection methods, and explores all corrosion-related aspects used in natural and industrial environments, including monitoring and testing. Throughout the textbook, the science and engineering of corrosion are merged to help readers perform correct corrosion assessments in both the design phase and plant management phase, and to define the optimal protection technique. In addition, the book addresses basic aspects of corrosion science, including the electrochemical mechanism, thermodynamic and kinetic aspects, the use of Pourbaix and Evans diagrams, and various forms of corrosion (from uniform to localised to stress corrosion phenomena); as well as the protection systems adopted to combat corrosion, including inhibitors, coatings and cathodic protection. Such basic knowledge is fundamental to understanding the "corrosion engineering" approach applied to the durability of metals immersed in water, buried in soil, exposed to the atmosphere, used in reinforced concrete, in the human body and in petrochemical plants, or at risk of high-temperature corrosion. A final chapter is dedicated to the use of statistics in corrosion. All chapters include exercises and practical examples to help students understand, predict, evaluate and mitigate corrosion problems. As such, the book offers the ideal learning resource for all students of corrosion courses in chemical, mechanical, energy and materials engineering at the graduate and advanced undergraduate level, as well as a valuable reference guide for engineers whose work involves real-world applications.
The book provides the broad knowledge on electromigration techniques including: theory of CE, description of instrumentation, theory and practice in micellar electrokinetic chromatography, isotachophoresis, capillary isoelectric focusing, capillary and planar electrochromatography (including description of instrumentation and packed and monolithic column preparation), 2D-gel electrophoresis (including sample preparation) and lab-on-a-chip systems. The book also provides the most recent examples of applications including food, environmental, pharmaceutical analysis as well as proteomics.
This book documents Professor Jacques Simonet's contribution to building new electrode materials and their related catalytic reactions. Research includes synthesis of new alloys of palladium, discovery of new composite electrodes (including gold- and silver-graphene) and the creation of new materials through judicious cathodic or anodic doping. Additionally, studies demonstrate the malleability and reactivity of previously unused precious and semi-precious metals for the creation of 2D and 3D catalytic materials. Studies key to innovative research show how transition metals may reversibly cathodically insert small size electro-active molecules such as CO2 and O2, and be applied to methods of depollution brought by carbon and nitrogen oxides.Written for practical use, Simonet has provided both theory and tools needed for those aiming to recreate and develop his experiments in electrochemical catalysis and surface modifications. This full publication of research gives graduate and post-graduate students of chemistry, electrochemistry and catalysis an in-depth insight into key historical and modern developments in the field.
'This book provides an excellent review and analysis of the latest information on rechargeable Li-S battery research. With a clear and concise writing style and in-depth technical material , this book will appeal to undergraduates and graduates, researchers, chemists, material scientists, and physicists working in the field of energy storage, especially those with an interest in Li-S battery technology.'IEEE Electrical Insulation MagazineLithium-sulfur (Li-S) batteries give us an alternative to the more prevalent lithium-ion (Li-ion) versions, and are known for their observed high energy densities. Systems using Li-S batteries are in early stages of development and commercialization however could potentially provide higher, safer levels of energy at significantly lower cost.In this book the history, scientific background, challenges and future perspectives of the lithium-sulfur system are presented by experts in the field. Focus is on past and recent advances of each cell compartment responsible for the performance of the Li-S battery, and includes analysis of characterization tools, new designs and computational modeling. As a comprehensive review of current state-of-play, it is ideal for undergraduates, graduate students, researchers, physicists, chemists and materials scientists interested in energy storage, material science and electrochemistry.
Analytical Applications of Ionic Liquids reviews the current research in analytic chemistry, covering subjects as diverse as separation science, chromatography, spectroscopy and analytical electrochemistry.As scientific developments have moved into the 21st century, they have increasingly had to take into account the effects on the environment, both locally and globally. Because of this, the search for applications of ionic liquids is growing in every area of analytical chemistry. Here, material is presented by specialists, giving a critical overview of the current literature surrounding this increasingly prominent topic. Analysis is carried out on latest achievements and applications, followed by critical discussion of possible future developments.As well as stimulating further research among established analytical chemists, this book can also be used for undergraduate and graduate courses on chemistry and chemical technology.
This book is designed to collect and review the research covering main directions in investigations of aromatic nitroso compounds in last decades, and to present both, the academic aspects of this chemistry, as well as the open field of its applicability. The book is divided in five chapters. The basic structural properties of the nitroso aromatic molecules are described in the first chapter. The second chapter is an overview of the methods of preparations of aromatic nitroso and polynitroso compounds, including classical synthetic methods and some new preparative approaches. The third part deals with the physico-chemical properties of nitroso aromates and azodioxides, its structure, crystallography, quantum chemical calculations, spectroscopy, typical reactions, and especially it is focused on the dimerizations in the solid-state. In the fourth chapter is represented organometallic chemistry of nitroso aromatic molecules and its applications in catalysis. The last part of the book deals with the behavior of this class of compounds in the biological systems, reactions with biomolecules and the use in toxicology.
This new volume documents the transition from the development of electrochemical monitoring of brain function, now more than 40 years old, to fundamental neuroscience. This includes the links of molecular neuroscience to biobehavior, to a molecular understanding of neurologically-linked diseases and to the investigation of neuroactive molecules made possible by new detection methodology. This work should be of interest to a broad audience, especially those who are engaged in neuroscience research, for example in drug discovery, but are not familiar with electrochemical methodology.
The first unified treatment of experimental and theoretical
advances in low-temperature chemistry Chemical Dynamics at Low
Temperatures is a landmark publication. For the first time, the
cumulative results of twenty years of experimental and theoretical
research into low-temperature chemistry have been collected and
presented in a unified treatment. The result is a text/reference
that both offers an overview of the subject and contains sufficient
detail to guide practicing researchers toward fertile ground for
future research. Topics covered include:
This is the first textbook in the field of electrochemistry that will teach experimental electrochemists how to carry out simulation of electrode processes. Processes at both macro- and micro-electrodes are examined and the simulation of both diffusion-only and diffusion-convection processes are addressed. The simulation of processes with coupled homogeneous kinetics and at microelectrode arrays are further discussed. Over the course of the book the reader's understanding is developed to the point where they will be able to undertake and solve research-level problems. The book leads the reader through from a basic understanding of the principles underlying electrochemical simulation to the development of computer programs which describe the complex processes found in voltammetry.This is the third book in the "Understanding Voltammetry" series, published with Imperial College Press and written by the Compton group. Other books in the series include "Understanding Voltammetry", written by Richard G Compton with Craig Banks and also "Understanding Voltammetry: Problems and Solutions" (2012) written by Richard G Compton with Christopher Batchelor-McAuley and Edmund Dickinson. These are and continue to be successful textbooks for graduates in electrochemistry and electroanalytical studies.
Many chemical processes that are important to society take place at boundaries between phases. Understanding these processes is critical in order for them to be subject to human control. The building of theoretical or computational models of them puts them into a theoretical framework in terms of which the behavior of the system can be understood on a detailed level. Theoretical and computational models are often capable of giving descriptions of interfacial phenomena that are more detailed, on a molecular level, than can be obtained through experimental observation. Advances in computer hardware have also made possible the treatment of larger and chemically more interesting systems. The study of interfacial phenomena is a multi-disciplinary endeavor which requires collaboration and communication among researchers in different fields and across different types of institutions. Because there are many important problems in this field much effort is being expended to understand these processes by industrial laboratories as well as by groups at universities. Our conference titled "Theoretical and Computational Approaches to Interface Phenomena" held at South Dakota State University, August 2-4, 1993 brought together over thirty scientists from industry and academia and three countries in the western hemisphere to discuss the modeling of interfacial phenomena.
The book intends to give a state-of-the-art overview of flexoelectricity, a linear physical coupling between mechanical (orientational) deformations and electric polarization, which is specific to systems with orientational order, such as liquid crystals.Chapters written by experts in the field shed light on theoretical as well as experimental aspects of research carried out since the discovery of flexoelectricity. Besides a common macroscopic (continuum) description the microscopic theory of flexoelectricity is also addressed. Electro-optic effects due to or modified by flexoelectricity as well as various (direct and indirect) measurement methods are discussed. Special emphasis is given to the role of flexoelectricity in pattern-forming instabilities.While the main focus of the book lies in flexoelectricity in nematic liquid crystals, peculiarities of other mesophases (bent-core systems, cholesterics, and smectics) are also reviewed. Flexoelectricity has relevance to biological (living) systems and can also offer possibilities for technical applications. The basics of these two interdisciplinary fields are also summarized.
Do not learn the tricks of the trade, learn the trade I started teachinggraduate coursesin chemical sensors in early 1980s, ?rst as a o- quarter (30 h) class then as a semester course and also as several intensive, 4-5-day courses. Later I organized my lecture notes into the ?rst edition of this book, which was published by Plenum in 1989 under the title Principles of Chemical Sensors. I started working on the second edition in 2006. The new edition of Principles of Chemical Sensors is a teaching book, not a textbook. Let me explain the difference. Textbooks usually cover some more or less narrow subject in maximum depth. Such an approach is not possible here. The subject of chemical sensors is much too broad, spanning many aspects of physical and analytical chemistry, biochemistry, materials science, solid-state physics, optics, device fabrication, electrical engine- ing, statistical analysis, and so on. The challengefor me has been to present uniform logical coverage of such a large area. In spite of its relatively shallow depth, it is intended as a graduate course. At its present state the amount of material is more thancan be coveredin a one-semestercourse (45h). Two one-quartercourseswould be more appropriate. Because of the breadth of the material, the sensor course has a somewhat unexpected but, it is hoped, bene?cial effect.
This book is a brief introductory text of the fundamental electrochemistry that is essential for important biomedical areas including electrophysiology, biosensors and even gene technology. The book targets readers who generally lack a substantial background knowledge in physical chemistry or the basic concepts in electricity for understanding most of the electrochemical textbooks, monographs or research articles. The contents are expressed in a concise and concept-by-concept manner with basic material such as math or optional applications appended in the appendices. Hopefully, it will be a quick and efficient solution for those who are eager to understand, handle and even develop an electrochemical method or tool by themselves.Co-publish with National Taiwan University. Distributed worldwide by World Scientific Publishing Co. except Taiwan.
The field of electrochemical measurement, with respect to thermodynamics, kinetics and analysis, is widely recognised but the subject can be unpredictable to the novice, even if they have a strong physical and chemical background, especially if they wish to pursue quantitative measurements. Accordingly, some significant experiments are, perhaps wisely, never attempted, while the literature is sadly replete with flawed attempts at rigorous voltammetry.This book presents problems and worked solutions for a wide range of theoretical and experimental subjects in the field of voltammetry. The reader is assumed to have knowledge up to a Master's level of physical chemistry, but no exposure to electrochemistry in general, or voltammetry in particular, is required. The problems included range in difficulty from senior undergraduate to research level, and develop important practical approaches in voltammetry.The problems presented in the earlier chapters focus on the fundamental theories of thermodynamics, electron transfer and diffusion. Voltammetric experiments and their analysis are then considered, including extensive problems on both macroelectrode and microelectrode voltammetry. Convection, hydrodynamic electrodes, homogeneous kinetics, adsorption and electroanalytical applications are discussed in the later chapters, as well as problems on two rapidly developing fields of voltammetry: weakly supported media and nanoscale electrodes.There is huge interest in the experimental procedure of voltammetry at present, and yet no dedicated question and answer book with exclusive voltammetric focus exists, in spite of the inherent challenges of the subject. This book aims to fill that niche.
The field of electrochemical measurement, with respect to thermodynamics, kinetics and analysis, is widely recognised but the subject can be unpredictable to the novice, even if they have a strong physical and chemical background, especially if they wish to pursue quantitative measurements. Accordingly, some significant experiments are, perhaps wisely, never attempted, while the literature is sadly replete with flawed attempts at rigorous voltammetry.This book presents problems and worked solutions for a wide range of theoretical and experimental subjects in the field of voltammetry. The reader is assumed to have knowledge up to a Master's level of physical chemistry, but no exposure to electrochemistry in general, or voltammetry in particular, is required. The problems included range in difficulty from senior undergraduate to research level, and develop important practical approaches in voltammetry.The problems presented in the earlier chapters focus on the fundamental theories of thermodynamics, electron transfer and diffusion. Voltammetric experiments and their analysis are then considered, including extensive problems on both macroelectrode and microelectrode voltammetry. Convection, hydrodynamic electrodes, homogeneous kinetics, adsorption and electroanalytical applications are discussed in the later chapters, as well as problems on two rapidly developing fields of voltammetry: weakly supported media and nanoscale electrodes.There is huge interest in the experimental procedure of voltammetry at present, and yet no dedicated question and answer book with exclusive voltammetric focus exists, in spite of the inherent challenges of the subject. This book aims to fill that niche.
This work covers new developments in the field of molecular nanomagnetism, complementing previous books in this area (for example the volume by Gatteschi, Sessoli and Villain on Single Molecule Magnets). The book is written by experts in the field and is intended as a compilation of critical reviews of new areas rather than a comprehensive text.
New Edition: Understanding Voltammetry (3rd Edition)The power of electrochemical measurements in respect of thermodynamics, kinetics and analysis is widely recognized but the subject can be unpredictable to the novice even if they have a strong physical and chemical background, especially if they wish to pursue the study of quantitative measurements further. Accordingly, some significant experiments are perhaps wisely never attempted while the literature is sadly replete with flawed attempts at rigorous voltammetry.This textbook considers how to go about designing, explaining and interpreting experiments centered around various forms of voltammetry (cyclic, microelectrode, hydrodynamic, etc.). The reader is assumed to have attained a knowledge equivalent to Master's level of physical chemistry but no exposure to electrochemistry in general, or voltammetry in particular. While the book is designed to "stand alone", references to important research papers are given to provide an introductory entry into the literature.In comparison to the first edition, two new chapters - transport via migration and nanoelectrochemistry - are added. Minor changes and updates are also made throughout the textbook to facilitate enhanced understanding and greater clarity of exposition. |
You may like...
Redox Chemistry - From Molecules to…
Olivier Fontaine
Hardcover
Electrocatalysis and Electrocatalysts…
Lindiwe Eudora Khotseng
Hardcover
Low Platinum Fuel Cell Technologies
Junliang Zhang, Shuiyun Shen
Hardcover
R2,803
Discovery Miles 28 030
|