![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry > Electrochemistry & magnetochemistry
Laser-enabled measurements are valuable tools for the investigation of surfaces and interfaces or for the in situ investigation of interfacial processes including electrode processes. The understanding of the thermodynamics of solid/liquid surfaces is important for surface science and electrochemistry. In the first part of this book, the authors describe a range of techniques for investigating interfacial tension and surface stress, which is important for coatings, thin films, and fuel cells. The techniques covered comprise bending beam (bending plate, bending cantilever, wafer curvature) methods with different detection techniques. Special attention is given to methods using optical detection by laser beam deflection or interferometry. The second part is devoted to the techniques based on the detection of refractive index gradients in the solution. The refractive index changes could be related to concentration gradients (Probe Beam Deflection, PBD) or light-induced thermal gradients (Photothermal Deflection Spectroscopy, PDS). The application of the techniques to surface-confined and solution electrochemical systems is described. Subsequently, a comparison with others techniques able to monitor ion fluxes is performed.
This book, written by the leading experts in the field of plant electrophysiology, provides a comprehensive and up-to-date overview of the current state of knowledge on electrical signaling and responses in plant physiology. It covers a significant interdisciplinary area for a broad range of researchers, emphasizing the physical, chemical, biological, and technological aspects of plant electrophysiology, while also demonstrating the role of electrochemical processes and ion channels in plant life cycles. Separate chapters describe the electrophysiology of the Venus flytrap, the Telegraph plant, Mimosa pudica, and other interesting plant species. Subsequent sections focus on mechanisms of plant movement, the role of ion channels, morphing structures, and the effects of electrical signal transduction on photosynthesis and respiration. Further topics include the electrophysiology of plant-insect interactions, how plants sense different environmental stresses and stimuli, and how phytoactuators respond to them. All chapters analyze the generation and transmission of electrical signals in plants.
Electrocatalysts are the heart of power devices where electricity is produced via conversion of chemical into electrical energy. - pressive advances in surface science techniques and in first pr- ciples computational design are providing new avenues for signi- cant improvement of the overall efficiencies of such power dev- es, especially because of an increase in the understanding of el- trocatalytic materials and processes. For example, the devel- ment of high resolution instrumentation including various electron and ion-scattering and in-situ synchrotron spectroscopies, elect- chemical scanning tunneling microscopy, and a plethora of new developments in analytical chemistry and electrochemical te- niques, permits the detailed characterization of atomic distribution, before, during, and after a reaction takes place, giving unpre- dented information about the status of the catalyst during the re- tion, and most importantly the time evolution of the exposed ca- lytic surfaces at the atomistic level. These techniques are c- plemented by the use of ab initio methods which do not require input from experimental information, and are based on numerical solutions of the time-independent Schrodinger equation including electron-electron and electron-atom interactions. These fir- principles computational methods have reached a degree of - turity such that their use to provide guidelines for interpretation of experiments and for materials design has become a routine practice in academic and industrial communities.
Boron-Doped Diamond Electrodes for Electroorganic Chemistry, by Siegfried R. Waldvogel, Stamo Mentizi und Axel Kirste.- Modern Developments in Aryl Radical Chemistry, by Gerald Pratsch und Markus R. Heinrich.- Radical Additions to Chiral Hydrazones: Stereoselectivity and Functional Group Compatibility, by Gregory K. Friestad.- Hydrogen Atom Donors: Recent Developments, by Andreas Gansauer, Lei Shi, Matthias Otte, Inga Huth, Antonio Rosales, Iris Sancho-Sanz, Natalia M. Padial und J. Enrique Oltra.- Radicals in Transition Metal Catalyzed Reactions? Transition Metal Catalyzed Radical Reactions? - A Fruitful Interplay Anyway Part 1. Radical Catalysis by Group 4 to Group 7 Elements, by Ullrich Jahn.- Radicals in Transition Metal Catalyzed Reactions? Transition Metal Catalyzed Radical Reactions? - A Fruitful Interplay Anyway Part 2. Radical Catalysis by Group 8 and 9 Elements, by Ullrich Jahn.- Radicals in Transition Metal Catalyzed Reactions? Transition Metal Catalyzed Radical Reactions?: A Fruitful Interplay Anyway Part 3: Catalysis by Group 10 and 11 Elements and Bimetallic Catalysis, by Ullrich Jahn.-"
Batteries that can store electricity from solar and wind generation farms are a key component of a sustainable energy strategy. Featuring 15 peer-reviewed entries from the Encyclopedia of Sustainability Science and Technology, this book presents a wide range of battery types and components, from nanocarbons for supercapacitors to lead acid battery systems and technology. Worldwide experts provides a snapshot-in-time of the state-of-the art in battery-related R&D, with a particular focus on rechargeable batteries. Such batteries can store electrical energy generated by renewable energy sources such as solar, wind, and hydropower installations with high efficiency and release it on demand. They are efficient, non-polluting, self-contained devices, and their components can be recovered and used to recreate battery systems. Coverage also highlights the significant efforts currently underway to adapt battery technology to power cars, trucks and buses in order to eliminate pollution from petroleum combustion. Written for an audience of undergraduate and graduate students, researchers, and industry experts, Batteries for Sustainability is an invaluable one-stop reference to this essential area of energy technology.
This and volume no. 47of "Modern Aspects of Electrochemistry" is composed of eight chapters covering topics having relevance both in corrosion science and materials engineering. In particular, the first seven chapters provide comprehensive coverage of recent advances in corrosion science."
Salen Metal Complexes as Catalysts for the Synthesis of Polycarbonates from Cyclic Ethers and Carbon Dioxide, by Donald J. Darensbourg.- Material Properties of Poly(Propylene Carbonates), by Gerrit. A. Luinstra and Endres Borchardt.- Poly(3-Hydroxybutyrate) from Carbon Monoxide, by Robert Reichardt and Bernhard Rieger. - Ecoflex(r) and Ecovio(r): Biodegradable, Performance-Enabling Plastics, by K. O. Siegenthaler, A. Kunkel, G. Skupin and M. Yamamoto.- Biodegradability of Poly(Vinyl Acetate) and Related Polymers, by Manfred Amann and Oliver Minge.- Recent Developments in Ring-Opening Polymerization of Lactones, by P. Lecomte and C. Jerome.- Recent Developments in Metal-Catalyzed Ring-Opening Polymerization of Lactides and Glycolides: Preparation of Polylactides, Polyglycolide, and Poly(lactide-co-glycolide), by Saikat Dutta, Wen-Chou Hung, Bor-Hunn Huang and Chu-Chieh Lin.- Bionolle (Polybutylenesuccinate), by Yasushi Ichikawa, Tatsuya Mizukoshi.- Polyurethanes from Renewable Resources, by David A. Babb.-"
Magnetic Oxides offers a cohesive up-to-date introduction to magnetism in oxides. Emphasizing the physics and chemistry of local molecular interactions essential to the magnetic design of small structures and thin films, this volume provides a detailed view of the building blocks for new magnetic oxide materials already advancing research and development of nano-scale technologies. Clearly written in a well-organized structure, readers will find a detailed description of the properties of magnetic oxides through the prism of local interactions as an alternative to collective electron concepts that are more applicable to metals and semiconductors. Researchers will find Magnetic Oxides a valuable reference.
"The Application of Biofluid Mechanics: Boundary Effects on Phoretic Motions of Colloidal Spheres" focuses on the phoretic motion behavior of various micron- to nanometer-size particles. The content of this book is divided into two parts: one on the concentration gradient-driven diffusiophoresis and osmophoresis, and one on thermocapillary motion and thermophoretic motion driven by temperature gradient. Diffusiophoresis and osmophoresis are mainly used in biomedical engineering applications, such as drug delivery, purification, and the description of the behavior of the immune system; thermocapillary motion and thermophoretic motion are applied in the field of semiconductors as well as in suspended impurities removal. The book also provides a variety of computer programming source codes compiled using Fortran for researchers' future applications. This book is intended for chemical engineers, biomedical engineers and scientists, biophysicists and fundamental chemotaxis researchers. Dr. Po-Yuan Chen is an Assistant Professor at the Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.
Photoelectrochemical Hydrogen Production describes the principles and materials challenges for the conversion of sunlight into hydrogen through water splitting at a semiconducting electrode. Readers will find an analysis of the solid state properties and materials requirements for semiconducting photo-electrodes, a detailed description of the semiconductor/electrolyte interface, in addition to the photo-electrochemical (PEC) cell. Experimental techniques to investigate both materials and PEC device performance are outlined, followed by an overview of the current state-of-the-art in PEC materials and devices, and combinatorial approaches towards the development of new materials. Finally, the economic and business perspectives of PEC devices are discussed, and promising future directions indicated. Photoelectrochemical Hydrogen Production is a one-stop resource for scientists, students and R&D practitioners starting in this field, providing both the theoretical background as well as useful practical information on photoelectrochemical measurement techniques. Experts in the field benefit from the chapters on current state-of-the-art materials/devices and future directions.
"Electrochemical Impedance Spectroscopy in PEM Fuel Cells" discusses one of the most powerful and useful diagnostic tools for various aspects of the study of fuel cells: electrochemical impedance spectroscopy (EIS). This comprehensive reference on EIS fundamentals and applications in fuel cells contains information about basic principles, measurements, and fuel cell applications of the EIS technique. Many illustrated examples are provided to ensure maximum clarity and observability of the spectra. "Electrochemical Impedance Spectroscopy in PEM Fuel Cells" will enable readers to explore the frontiers of EIS technology in PEM fuel cell research and other electrochemical systems. As well as being a useful text for electrochemists, it can also help researchers who are unfamiliar with EIS to learn the technique quickly and to use it correctly in their fuel cell research. Managers or entrepreneurs may also find this book a useful guide to accessing the challenges and opportunities in fuel cell technology.
In this book, recent progress in batteries is firstly reviewed by researchers in three leading Japanese battery companies, SONY, Matsushita and Sanyo, and then the future problems in battery development are stated. Then, recent development of solid state ionics for batteries, including lithium ion battery, metal-hydride battery, and fuel cells, are reviewed. A battery comprises essentially three components: positive electrode, negative electrode, and electrolyte. Each component is discussed for the construction of all-solid-state Batteries. Theoretical understanding of properties of battery materials by using molecular orbital calculations is also introduced.
Researchers and professionals will find a hands-on guide to successful experiments and applications of modern electroanalytical techniques here. The new edition has been completely revised and extended by a chapter on quartz-crystal microbalances. The book is written for chemists, biochemists, environmental and materials scientists, and physicists. A basic knowledge of chemistry and physics is sufficient for understanding the described methods. Electroanalytical techniques are particularly useful for qualitative and quantitative analysis of chemical, biochemical, and physical systems. Experienced experts provide the necessary theoretical background of electrochemistry and thoroughly describe frequently used measuring techniques. Special attention is given to experimental details and data evaluation.
Do not learn the tricks of the trade, learn the trade I started teachinggraduate coursesin chemical sensors in early 1980s, ?rst as a o- quarter (30 h) class then as a semester course and also as several intensive, 4-5-day courses. Later I organized my lecture notes into the ?rst edition of this book, which was published by Plenum in 1989 under the title Principles of Chemical Sensors. I started working on the second edition in 2006. The new edition of Principles of Chemical Sensors is a teaching book, not a textbook. Let me explain the difference. Textbooks usually cover some more or less narrow subject in maximum depth. Such an approach is not possible here. The subject of chemical sensors is much too broad, spanning many aspects of physical and analytical chemistry, biochemistry, materials science, solid-state physics, optics, device fabrication, electrical engine- ing, statistical analysis, and so on. The challengefor me has been to present uniform logical coverage of such a large area. In spite of its relatively shallow depth, it is intended as a graduate course. At its present state the amount of material is more thancan be coveredin a one-semestercourse (45h). Two one-quartercourseswould be more appropriate. Because of the breadth of the material, the sensor course has a somewhat unexpected but, it is hoped, bene?cial effect.
Proceedings of the Baroda Workshop on Nanomaterials, Magnetic Ions and Magnetic Semiconductors studied mostly by Hyperfine Interactions (IWNMS 2004), held in Baroda, India, 10-14 February, 2004. Researchers and graduate students interested in the application of hyperfine interaction techniques, mostly Moessbauer Effect and Perturbed Angular Correlations, to the fast developing fields of magnetic nanomaterials, magnetic ions and magnetic semiconductors will find this volume indispensable. The volume also addresses to the application of synchrotron radiation and ion beams to these systems.
This volume is ba. sed on the presentations gi ven at the ElectroFinnAnalysis conference held on J une 6-9, 1988 in Turku-Abo, Finland. This event was the second in a series of electroanalytical conferences. The first was held in Ireland 1986 and the next will be held in Spain 1990. The aim of these conferences is tobring tagether scientists who use electroanalytical methods in their research. This is also reflected in the disposition of this volume where instrumentation and applications from the different fields have their own chapters. The editors are grateful to Mr. Johan Nyman, Mr. Kent Westerbolm and Mr. Markku Lehto for their technical assistance during the editorial work of this volume. Ari Ivaska Andrzej Lewenstam Ralf Sara V CONTENTS lntroduction Ari Ivaska ELECTROCHEMICAL INSTRUMENTATION AND METHODS New Instrumental Approaches to Fast Electro-Chemistry at Ultramicroelectrodes . . . . . . . . . . . 5 Larry R. Faulkner, Michael R. Walshand Chuanjing Xu Photoelectroanalytical Chemistry - Methods and Instrumentation . . . 15 J ouko J. Kaukare Experiences of an On-Line Fourier Transform Faradaic Admittance Measurement (FT-FAM) SystemBasedon Digital Signal Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Sten 0. Engblom, Mikael Wasberg, Johan Bobacka and Ari Iva. ska Processor-Controlled Fast Potentiostat . '. . . 31 J. Kaukare and J. Lukka. ri Smoothing of AC Polaragraphie Data by FFT Filtering . ' . . . . 37 J oha. n Bobacka. a. nd Ari Jvaska Reverse Pulse Voltammetry at Microelectrodes. New Possibilities in Analytical Chemistry . . . . . . . . . . . . . . . . . . 47 Zbigniew Stojek Multiple Sensor Arrays: Advantages and lmplications 51 Dermot Diamond Simultaneaus ESR-Electrochemical Investigations at Solid Electrodcs . ."
The first international symposium on the subject "The Physics and Chemistry of Si02 and the Si-Si02 Interface," organized in association with the Electrochemical Society, Inc. , was held in Atlanta, Georgia on May 15- 20, 1988. This symposium contained sixty papers and was so successful that the sponsoring divisions decided to schedule it on a regular basis every four years. Thus, the second symposium on "The Physics and Chemistry of Si02 and the Si02 Interface was held May 18-21, 1992 in St. Louis, Missouri, again sponsored by the Electronics and Dielectrics Science and Technology Divisions of The Electrochemical Society. This volume contains manuscripts of most of the fifty nine papers presented at the 1992 symposium, and is divided into eight chapters - approximating the organization of the symposium. Each chapter is preceded with an introduction by the session organizers. It is appropriate to provide a general assessment of the current status and understanding of the physics and chemistry of Si02 and the Si02 interface before proceeding with a brief overview of the individual chapters. Semiconductor devices have continued to scale down in both horizontal and vertical dimensions. This has resulted in thinner gate and field oxides as well as much closer spacing of individual device features. As a result, surface condition, native oxide composition, and cleaning and impurity effects now provide a much more significant contribution to the properties of oxides and their interfaces.
It is now time for a comprehensive treatise to look at the whole field of electrochemistry. The present treatise was conceived in 1974, and the earliest invitations to authors for contributions were made in 1975. The completion of the early volumes has been delayed by various factors. There has been no attempt to make each article emphasize the most recent situation at the expense of an overall statement of the modern view. This treatise is not a collection of articles from Recent Advances in Electro chemistry or Modern Aspects of Electrochemistry. It is an attempt at making a mature statement about the present position in the vast area of what is best looked at as a new interdisciplinary field. Texas A & M University John O'M. Bockris University of Ottawa Brian E. Conway Case Western Reserve University Ernest B. Yeager Texas A & M University Ralph E. White Preface to VoluIJJe 8 The past three decades have seen the rapid evolution of the transport aspects of electrochemical engineering into a formal part of electrochemistry as well as chemical engineering. With minor exceptions, however, this subject has not been systematically covered in any treatise or recent electrochemical text. The editors believe that the treatment in this volume will serve the function.
Jonathan Scragg documents his work on a very promising material suitable for use in solar cells. Copper Zinc Tin Sulfide (CZTS) is a low cost, earth-abundant material suitable for large scale deployment in photovoltaics. Jonathan pioneered and optimized a low cost route to this material involving electroplating of the three metals concerned, followed by rapid thermal processing (RTP) in sulfur vapour. His beautifully detailed RTP studies - combined with techniques such as XRD, EDX and Raman - reveal the complex relationships between composition, processing and photovoltaic performance. This exceptional thesis contributes to the development of clean, sustainable and alternative sources of energy
This book primarily focuses on the fundamentals of and new developments in electrochemiluminescence (ECL), presenting high-quality content and explicitly aiming to summarize and disseminate the current state-of-the-art. The topics covered include the fundamental theory, mechanism, types of reactions involved, and the instrumental techniques. The book also examines the applications of ECL in many of the emerging fields of science, such as bioanalytical, analytical, clinical, pharmaceutical, forensic, military, microchip, TAS, and LED. It will be invaluable to bioanalysts, drug analysts, pharmaceutical researchers and other professionals worldwide, as well as to other interested readers.
This second volume carries on the excellent work of its predecessor, ex tending its scope to other melts and to other techniques. It continues to present first-hand understanding and experience of this difficult and demanding field. There is ever present the trade-off or reconciliation between the novel chemistry of systems not dominated by the mediating influence of a supposedly indifferent solvent and the high temperatures required to effect the fluidity of the system. At the limit, the very high temperatures so increase the rates of all reactions as to dissolve the temporal difference between the thermodynamic and the kinetic view of chemistry. What can happen will happen and invariably does happen. Vessels corrode, the apparatus becomes a reactant, and the number of tolerant materials able to withstand the attack shrinks to graphite, boron carbide or, if all else fails, to frozen parts of the molten salt itself. It is probably true that there is no limit to man's ingenuity but I believe that God gave us molten salts just to test that thesis. If there is ever a Molten Salt Club, and Englishmen love clubs, its membership will be exclusive. It would certainly include the authors of this series. Graham Hills University of Strathclyde ix Preface In the first volume of this series, we expressed our contention that a real need existed for practical guidance in the field of molten salt experimentation."
This second edition of a well-received volume has been thoroughly updated and expanded to cover the most recent developments. Coverage now includes additional polymers such as polyindole and polyazines, composites of polymers with carbon nanotubes, metals, and metal oxides, as well as bending-beam techniques for characterization. Again, the author provides a systematic survey of the knowledge accumulated in this field in the last thirty years. This includes thermodynamic aspects, the theory of the mechanism of charge transport processes, the chemical and physical properties of these compounds, the techniques of characterization, the chemical and electrochemical methods of synthesis as well as the application of these systems. The book contains a compilation of the polymers prepared so far and covers the relevant literature with almost 2000 references. From reviews of the previous edition 'a comprehensive reference guide for those interested in this field' (Journal of Solid State Electrochemistry)
This book had its nucleus in some lectures given by one ofus (J. O'M. B. ) in a course on electrochemistry to students of energy conversion at the Vniversity of Pennsylvania. It was there that he met a number of people trained in chemistry, physics, biology, metallurgy, and materials science, all ofwhom wanted to know something about electrochemistry. The concept of writing a book about electrochemistry wh ich could be understood by people with very varied backgrounds was thereby engendered. The lectures were recorded and written up by Dr. Klaus Muller as a 293-page manuscript. At a later stage, A. K. N. R. joined the effort; it was decided to make a fresh start and to write a much more comprehensive text. Of methods for direct energy conversion, the electrochemical one is the most advanced and seems the most likely to become of considerable practical importanee. Thus, conversion to electrochemically powered trans portation systems appears to be an important step by means of which the difficulties of air pollution and the effeets of an increasing concentration in the atmosphere of carbon dioxide may be met. Corrosion is recognized as having an electroehemical basis. The synthesis of nylon now contains an important electroehemical stage. Some central biological mechanisms have been shown to take place by means of electrochemical reactions. A number of Ameriean organizations have recently recommended greatly increased activity in training and research in electrochemistry at universities in the Vnited States." |
![]() ![]() You may like...
Can We Be Safe? - The Future Of Policing…
Ziyanda Stuurman
Paperback
![]()
HowExpert Guide to Astronomy - 101…
Howexpert, Ryan Thomas Kirby
Hardcover
R794
Discovery Miles 7 940
Theories For Decolonial Social Work…
Adrian Van Breda, Johannah Sekudu
Paperback
![]() R537 Discovery Miles 5 370
Skills Performance Checklists for…
Martha Keene Elkin, Anne Griffin Perry, …
Paperback
R1,111
Discovery Miles 11 110
Sin No More - From Abortion to Stem…
John Dombrink, Daniel Hillyard
Hardcover
R3,114
Discovery Miles 31 140
Primary Clinical Care Manual - A…
Soweto Trust for Nurse Clinical Training
Paperback
|