![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > Electrochemistry & magnetochemistry
This volume is concerned with methods that are available for the calculation of for mation constants, in particular computational procedures. Although graphical meth ods have considerable value in the exploration of primary (raw) data they have been overtaken by computational methods, which, for the most part, take primary data and return the refined formation constants. Graphical methods are now considered com plementary to these general computational procedures. This volume brings together programs that span the lifetime of computer-assisted determination of formation constants. On one hand the reader will find listings of programs that are derived from LETAGROP (b.l961) and the GAUSS-G/SCOGS (b. 1962) families. On the other hand programs are presented that are the newest mem bers of the SCOGS lineage and from the on-going MINIQUAD series. One program is presented that describes a computational approach to the classical Hedstrom Osterberg methods; another that takes care of electrode calibration in a simple yet rigorous manner. Potentiometry and spectrophotometry are the most popular experimental tech niques for equilibrium studies, and the programs in this volume reflect this. Four programs handle potentiometric data, two will process spectrophotometric data, and one makes use of both types of data separately or in combination."
A cogent and useful introduction to thetheory and application of electrochemistry A significantly revised and improved edition of a noted text, this Second Edition of Fundamentals of Electrochemistry is designed to serve both professionals and novices with the essential information they require to understand and apply electrochemical processes. For students not yet familiar with this field, the text offers a basic outline of the essential topics of theoretical and applied electrochemistry; for practicing researchers and engineers, the book serves as a key to recent and advanced developments in the field. This new edition features: Improved organization that includes a rewritten and simplified introductory section that makes the basics more accessible to undergraduates More advanced topics of interest to postgraduate readers, discussed in later sections A new focus on experimental techniques, including a comprehensive chapter on physical methods for the investigation of electrode surfaces New chapters dealing with recent trends in electrochemistry, including nanoelectrochemistry, solid-state electrochemistry, conducting polymers, electrocatalysis, computer simulation in electrochemistry, and electrochemistry and the environment Chapters on batteries, fuel cells, supercapacitors, and other electrochemical devices and phenomena The thoughtfully revised Fundamentals of Electrochemistry, Second Edition is a cogent and comprehensive resource for anyone needing to master this highly relevant field.
The present volume is the second in a two-volume set dealing with modelling and numerical simulations in electrochemistry. Emphasis is placed on the aspect of nanoelectrochemical issues. It seems appropriate at this juncture to mention the n- growing body of opinion in some circles that George Box was right when he stated, three decades ago, that "All models are wrong, but some are useful." Actually, when the statement itself was made it would have been more appropriate to say that "All models are inaccurate but most are useful nonetheless." At present, however, the statement, as it was made, is far more appropriate and closer to the facts than ever before. Currently, we are in the midst of the age of massively abundant data. Today's philosophy seems to be that we do not need to know why one piece of information is better than another except through the statistics of incoming and outgoing links between information and this is good enough. It is why, both in principle and in practice, one can translate between two languages, without knowledge of either. While none of this can be ignored, and it may even be true that "All models are wrong and increasingly you can succeed without them" the traditional approach of scienti?c modelling is still the order of the day. That approach may be stated as hypothesize - measure - model - test. It is in this light that the present volume should be viewed.
The mechanism of an elementary act is undoubtedly one of the most fundamental problems of chemical and, in particular, electro chemical kinetics. Although this problem has fascinated scientists for quite a long time, it was only in the late fifties and early sixties that it began to be actively investigated for charge transfer reactions. Owing to the development of new methods in the analysis of this problem, significant advancements were made in theoretical as well as experimental studies. These investigations showed that the physical mechanism of charge transfer in all processes including heterogeneous electrochemical and homogeneous chemical and bio chemical processes is basically the same. Hence, the results ob tained in the field of electrochemical kinetics are relevant to the understanding of homogeneous chemical reactions as well. This book endeavors to summarize the results of investigations carried out during the last two decades. It is based on the author's monograph "Electrode Reactions: The Mechanism of an Elementary Act" (Nauka, 1979). As compared to the first version, the book has been considerably revised and enlarged not only to include a large body of data published between 1978 and 1982, but also to analyze in detail the links between electrochemical and homogeneous, in particular enzymatic, kinetics. As a result, a new chapter has been added to the book. The change in the title reflects the fact that the material contained in the book is not restricted to an investigation of purely electrochemical problems."
No. 29 offers new insights into the energies of activation of electrode reactions and the interfacial behavior of proteins.
Mechanism of charge transport in organic solids has been an issue of intensive interests and debates for over 50 years, not only because of the applications in printing electronics, but also because of the great challenges in understanding the electronic processes in complex systems. With the fast developments of both electronic structure theory and the computational technology, the dream of predicting the charge mobility is now gradually becoming a reality. This volume describes recent progresses in Prof. Shuai's group in developing computational tools to assess the intrinsic carrier mobility for organic and carbon materials at the first-principles level. According to the electron-phonon coupling strength, the charge transport mechanism is classified into three different categories, namely, the localized hopping model, the extended band model, and the polaron model. For each of them, a corresponding theoretical approach is developed and implemented into typical examples.
The objective of the present volume is to develop the theory and practice of nonmetal electrochemistry from first principles, emphasizing energy level models, in particular the fluctuating energy level model of Marcus and Gerischer. A single volume emphasizing these models. and the in terpretation of experiments based on these models, has not been available. Yet this area of electrochemical technology, where the use of such models is required, has developed a great deal of interest. This is not only because of the interest in photoelectrochemical solar cells, but also because of the importance of the concepts in corrosion, sensors, coated metal electrodes, and, indeed, to the general theory of electrode reactions. This book is an attempt to fill the void-to develop in a single volume the basic description of electrode reactions on nonmetallic electrodes and oxide-covered metal electrodes. The development of the fluctuating energy level model to describe electrode reactions on nonmetals (as described in Chapters I through 3) has permitted a significant forward step in the understanding of such re actions. The power of the model is illustrated by the simple methods available to determine the energy levels of interest-the conduction and valence bands of the nonmetals (Chapter 5), and their relation to the energy levels of oxidizing or reducing agents in solution. In Chapter 6, we illustrate the ability of the simple models. based on these parameters, to describe successfully electrode reactions at an inert electrode."
This volume aims at bringing together the results of extensive research done during the last fifteen years on the interfacial photoelectronic properties of the inorganic layered semiconducting materials, mainly in relation to solar energy conversion. Significant contributions have been made both on the fundamental aspects of interface characteristics and on the suitability of the layered materials in photoelectrochemical (semiconductor/electrolyte junctions) and in solid state photovoltaic(Schottky and p-n junctions) cells. New insights into the physical and chemical characteristics of the contact surfaces have been gained and many new applications of these materials have been revealed. In particular, the basal plane surface of the layered materials shows low chemical reactivity and specific electronic behaviour with respect to isotropic solids. In electrochemical systems, the inert nature of these surfaces characterized by saturated chemical bonds has been recognized from studies on charge transfer reactions and catalysis. In addition, studies on the role of the d-band electronic transitions and the dynamics of the photogene rated charge carriers in the relative stability of the photoelectrodes of the transition metal dichalcogenides have deepened the understanding of the interfacial photoreactions. Transition metal layered compounds are also recognized as ideal model compounds for the studies Involving surfaces: photoreactions, adsorption phenomena and catalysis, scanning tunneling microscopy and spectroscopy and epitaxial growth of thin films. Recently, quantum size effects have been investigated in layered semiconductor colloids.
This volume documents the scientific events of the NATO Advanced Research Workshop (ARW) on The Preparation of Nanoparticles in Solutions and in Solids. The ARW was held in the second largest city in Hungary, Szeged, truthfully referred to as "the city of sunshine," from March 8 to March 13, 1996. The seventy-seven participants, including seventeen students, came from twentyone different countries. Housing all participants together and arranging a number of social activities fostered lively discussions both inside and outside of formal sessions. Twenty-one key lectures were presented in five sessions. Each session was followed by a fortyfive minutes of general discussion. One evening was devoted to the presentation of fifty-five posters. Thirty-two contribution were submitted and accepted for publication in the present volume. The volume also contains the minutes of the discussions, and a summary of the conclusions of the working groups. The ARW was organized under the auspices and financial support of NATO, City of Szeged, European Research Office of the US Army, Hungarian Academy of Sciences, Hungarian National Committee for Technological Development (OMBF), International Association of Colloid and Interface Scientists IACIS, and National Science Foundation (NSF). Both the organizers and participants gratefully acknowledge the generous support of the agencies. The Editors also thank the high quality and creative contributions of the participants. It is they who made this volume a reality. Janos H. fendler Irnre Dekany ix Glossary of Some Names and Acronyms Advanced Materials Man-made materials having superior mechanical, thennal, electrical, optical, and other desirable properties.
This NATO Advanced Research Workshop was devoted to a specialized topic in molten salt chemistry and was held in an exotic location (as far as Westerners were concerned) well within the Arctic Circle. It nevertheless facilitated a fruitful week, both ofscience and ofhuman contacts. The 42 oral presentations and posters from nine countries enabled the 59 participants to learn a great deal about many areas of recent research in the molten salt chemistry of refractory metals, while making new contacts as well as renewing old friendships. The time ofinformal contact ledto the beginningofa numberofnew research cooperations with interchangeofpersonnel. Thus the twin aimsofadvancing science and improving East-West understanding were both amply fulfilled. Indeed a warm and happy family atmosphere was very tangible doth during the scientific sessions and the social events, which participants, accompanying persons and local staffall enjoyed. This opportunity of living for a short time within the Arctic Circle was a novelty for most Westerners, who generally appreciated the very warm weather (the hottest for 20 years according to some residents), as well as the beautiful surroundings ofvery green birch/pine forest, rushing rivers, vast lakes and rounded mountains, frequently illuminated by wonderful sunsets. The evening barbeque beside Lake Imandra (100 km long) and the coach tour beside the beautiful White Sea dotted with islands in the Kandalaksha Recreational Area (National Park), to sample Pomor culture, dancing and fresh salmon soup, were high spots ofthe social programm
Prof. Jerzy Sobkowski starts off this 31st volume of Modern Aspects of Electrochemistry with a far-ranging discussion of experimental results from the past 10 years of interfacial studies. It forms a good background for the two succeeding chapters. The second chapter is by S. U. M. Khan on quantum mechanical treatment of electrode processes. Dr. Khan's experience in this area is a good basis for this chapter, the contents of which will surprise some, but which as been well refereed. Molecular dynamic simulation is now a much-used technique in physical electrochemistry and in the third chapter Ilan Benjamin has written an account that brings together information from many recent publications, sometimes confirming earlier modeling approaches and sometimes breaking new territory. In Chapter 4, Akiko Aramata's experience in researching single crystals is put to good advantage in her authoritative article on under- tential deposition. Finally, in Chapter 5, the applied side of electrochemistry is served by Bech-Neilsen et al. in the review of recent techniques for automated measurement of corrosion. J. O'M. Bockris, Texas A&M University B. E. Conway, University of Ottawa R. E. White, University of South Carolina Contents Chapter 1 METAL/SOLUTION INTERFACE: AN EXPERIMENTAL APPROACH Jerzy Sobkowski and Maria Jurkiewicz-Herbich I. Introduction.............................................. 1 II. Molecular Approach to the Metal/Solution Interface............. 3 1. Double-Layer Structure: General Considerations .......... 3 2. Solid Metal/Electrolyte Interface.......................... 8 3. Methods Used to Study Properties ofthe Metal/Solution Interface: Role of the Solvent and the Metal............. 15 The Thermodynamic Approach to the Metal/Solution Interface 35 III.
Integrating both theoretical and applied aspects of electrochemistry, this acclaimed monograph series presents a review of the latest advances in the field. The current volume covers ion and electron transfer across monolayers of organic surfactants, determination of current distributions governed by Laplace's equation, and three other subjects.
This volume in the acclaimed series Modern Aspects of Electrochemistry starts with a dedication to the late Professor Brian Conway who for 50 years helped to guide this series to its current prominence. The remainder of the volume is then devoted to the following topics: PEM fuel cells; the use of graphs in electrochemical reaction newtworks; nanomaterials in Lithium-ion batteries; direct methanolf fuel cells (two chapters); fuel cell catalyst layers. The book is for electrochemists, electrochemical engineers, fuel cell workers and energy generation workers.
'A comprehensive review of the current state of the theoretical development in this important area of potential application of conducting polymers, and is very timely...The editor-author is to be congratulated for his marathon efforts and the production of a significant contribution to the literature.' -TRIP This three-part series provides undergraduate and graduate students in electrochemistry and materials science with a broad understanding of electroactive polymers. In Part I, renowned scientists examine the fundamental principles underlying electrochemical behavior of electroactive polymer materials. Contributors focus on the fundamentals of charge percolation and conductivity behavior associated with the membrane properties of electroactive polymer films. Part I also includes coverage of the phenomenon of heterogeneous redox catalysis at electroactive polymer modified electrodes.
This volume analyzes and summarizes recent developments in several key interfacial electrochemical systems in the areas of fuel cell electrocatatalysis, electrosynthesis and electrodeposition. The six Chapters are written by internationally recognized experts in these areas and address both fundamental and practical aspects of several existing or emerging key electrochemical technologies. The Chapter by R. Adzic, N. Marinkovic and M. Vukmirovic provides a lucid and authoritative treatment of the electrochemistry and electrocatalysis of Ruthenium, a key element for the devel- ment of efficient electrodes for polymer electrolyte (PEM) fuel cells. Starting from fundamental surface science studies and interfacial considerations, this up-to-date review by some of the pioneers in this field, provides a deep insight in the complex catalytic-electrocatalytic phenomena occurring at the interfaces of PEM fuel cell electrodes and a comprehensive treatment of recent developments in this extremely important field. Several recent breakthroughs in the design of solid oxide fuel cell (SOFC) anodes and cathodes are described in the Chapter of H. Uchida and M. Watanabe. The authors, who have pioneered several of these developments, provide a lucid presentation d- cribing how careful fundamental investigations of interfacial electrocatalytic anode and cathode phenomena lead to novel electrode compositions and microstructures and to significant practical advances of SOFC anode and cathode stability and enhanced electrocatalysis.
Volume 41 of the prominent series Modern Aspects of Electrochemistry covers a range of topics in Electrochemistry and Electrochemical Engineering. The topics include the second chapter on the survey of experimental techniques and devices of solid state electrochemistry begun by Professor Joachim Maier in Volume 39. Chapter two contains a review of synthesis and characterization of nanoporous carbons and their electrochemical applications. The next chapter reviews and discusses the use of graphs in the study of chemical reaction network. The book also reviews and discusses mathematical models of three dimensional electrode structures.
Square-wave voltammetry is a technique readily available to every researcher, scientist, engineer and practitioner applying modern electrochemical measurement systems. It is of beneficial use in analytical applications and in fundamental studies of electrode mechanisms. But the optimised exploitation of this technique is only possible for those with a detailed knowledge of signal generation and of the thermodynamics and kinetics involved. This volume, written by three distinguished experts, systematically delivers the complete and in-depth information that enables both researchers and users of square-wave voltammetry to apply this technique effectively. Square-Wave Voltammetry also offers an appendix on mathematical modeling and a chapter on the most important electrode mechanisms which briefly reviews the underlying theory and numerical formulae intrinsic for simulating experiments with popular software tools, e.g. Mathcad (R).
Progress in the development of oxygen ion and mixed conductors is responsible for innovations in the fields of gas sensors, fuel cells, oxygen permeation membranes, oxygen pumps and electrolyzers. Commercialization has been impeded by materials stability and compatibility issues, high costs of fabrication and inadequate understanding of the interfacial phenomena controlling the operation of these devices. In this text we assemble a unique group of experts whose articles straddle, for the first time, all the key topical areas ranging from fundamentals relating to (a) defects, electrochemical, and interfacial processes, (b) catalysis, electrocatalysis and gas reforming, to design and fabrication including (c) advanced electroceramic processing methods, (d) materials selection and optimization, (e) and applications including scale up, commercialization and competitive technologies. This material was first presented at a NATO Advanced Study Institute held in Erice, Sicily, Italy during the period july 15-30, 1997. All the participants benefited from the integrated and synthetic approach taken to the subject matter with liberal use of examples and case studies. Many opportunities were made available for critical discussions of the key concepts and issues both within the formal sessions as well as in the cafes and restaurants which populate Erice. I join the co-organizers of the Advanced Study Institute, Professors J. Schoonman, I. Riess and M. Balkanski, in thanking NATO for providing support for the ASI. Thanks are also due to Dr.
All-solid-state batteries have gained much attention as the next-generation batteries. This book is about various Li ion ceramic electrolytes and their applications to all-solid-state battery. It contains a wide range of topics from history of ceramic electrolytes and ion conduction mechanisms to recent research achievements. Here oxide-type and sulfide-type ceramic electrolytes are described in detail. Additionally, their applications to all-solid-state batteries, including Li-air battery and Li-S battery, are reviewed.Consisting of fundamentals and advanced technology, this book would be suitable for beginners in the research of ceramic electrolytes; it can also be used by scientists and research engineers for more advanced development.
The current volume covers a host of topics in organic synthesis, photo- / radiation-chemistry, electron donor-acceptor interaction, supramolecular chemistry and photovoltaics. It provides a unique forum for expounding and discussing the latest developments in these important disciplines of "Fullerene Research." The selected examples, described in this comprehensive and one-of-a-kind resource, will illustrate the continuing interest and potential of fullerenes as multifunctional moieties in well-ordered multicomponent composites. In view of the novelty and the various areas involved, the composed monographs are of interest for condensed matter physicists; materials scientists; electrochemists; biochemists; solid-state, physical, organic, inorganic, and theoretical chemists; chemical, electrical, and optical engineers; and upper-level undergraduate and graduate students in these disciplines.
Given the backdrop of intense interest and widespread discussion on the prospects of a hydrogen energy economy, this book aims to provide an authoritative and up-to-date scientific account of hydrogen generation using solar energy and renewable sources such as water. While the technological and economic aspects of solar hydrogen generation are evolving, the scientific principles underlying various solar-assisted water splitting schemes already have a firm footing. This book aims to expose a broad-based audience to these principles. This book spans the disciplines of solar energy conversion, electrochemistry, photochemistry, photoelectrochemistry, materials chemistry, device physics/engineering, and biology.
To the eyes of a chemist, carbon is certainly one of the most fascinating elements of the periodic table. Basically, the electronic structure and atomic size of carbon enables this element to form a variety of bonds with other elements and, most importantly, with other carbon atoms as weIl. These unique features lead to the amazingly complicated molecular structures we encounter e. g. in life sciences and organic chemistry. Of course, the technical importance of carbon is enormou- but I don't want to carry too many coals to Newcastle. Prom the viewpoint of an astrophysicist or chemist, the significance of carbon lies in the fact that it is the most abundant condensable element in space. Born in the interior of stars, and from there expelled into the interstellar medium, it initiates the formation of simple and complex molecules and of nanoscopic grains. These in turn form huge clouds in space - the birthplace of new stars and planetary systems. The decisive role of carbon in interstellar chemistry is widely accepted and the search for more and more families of interstellar carbon-bearing molecules is a topic of ongoing research. The interdisciplinary aspect of carbon also concerns its various solid forms, in which C and the other closed-cage fullerenes are certainly some of the most popular 60 newcomers.
Safety is one of the most important issues today. Recent international standards such as ISO and IEC have consistently advocated goal-based procedures of designing systems for better safety. The procedure assumes safety goals are explicitly established by international organizations, individual nations, particular industries or private companies. Satisfying Safety Goals by Modern Reliability Engineering is a methodological approach to the goal-based safety design procedure that will soon be an international requirement. Satisfying Safety Goals by Modern Reliability Engineering primarily focuses on the quantitative aspects of international standards. The methodologies presented are illustrated through the use of case studies. The book also:
Satisfying Safety Goals by Modern Reliability Engineering will be a good reference for senior undergraduates, postgraduates and researchers in the fields of reliability engineering and safety engineering and risk assessment. It will also be of interest to reliability engineers, practitioners in industry and regulatory authorities.
Closing the gap between electrochemical engineering science and electrochemical technology, this volume is for all electrochemists and electrochemical engineers, metallurgists, engineers in chemical process, galvanic, metallurgical and electric power industries.
The major problem facing new energy conversion and storage technologies remains device ef?ciency. Projects based on nanostructured materials can yield improved performance in devices involving electrochemical reactions and heterogeneous catalysis, such as fuel and solar cells, batteries, etc. Nanoscale structures drama- cally alter the surface reaction rates and electrical transport throughout the material, causing a dramatic improvement in energy storage, conversion, and generation. Furthermore, the design of nanoscale materials to be applied in alternative energy devices is a predictable way to develop a wide range of new technologies for a more sustainable future. Therefore, the goal of this book is to present basic fundamentals and the most relevant properties of nanostructured materials in order to improve alternative energy devices. This book begins with a chapter by Gratzel .. summarizing the use of mesoscopic thin ?lms and hybrid materials in the development of new kinds of regenerative photoelectrochemical devices. Applications include high-ef?ciency solar cells. In chapter two, Ribeiro and Leite describe assembly and properties of nanop- ticles. The chapter presents a review on the properties and main features of nanoscale materials, emphasizing the dependence of key properties on size for energy purposes. A general description is also given of nanoparticle synthesi- tion methods (mainly oxides), focusing on advances in tailoring controlled shape nanostructures. |
You may like...
Accountability of Local Authorities in…
Hugh Coombs, J. Edwards
Paperback
R960
Discovery Miles 9 600
Chromatographic Analysis of the…
Dimitra A. Lambropoulou, Leo M.L. Nollet
Paperback
R4,261
Discovery Miles 42 610
Chiral Separations by Capillary…
Ann Van Eeckhaut, Yvette Michotte
Paperback
R1,960
Discovery Miles 19 600
|