![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry > Electrochemistry & magnetochemistry
This book offers a review of electrochemical impedance spectroscopy (EIS) and its application in online condition monitoring of electrochemical devices, focusing on the practicalities of performing fast and accurate EIS. The first part of the book addresses the theoretical aspects of the fast EIS technique, including stochastic excitation signals, time-frequency signal processing, and statistical analysis of impedance measurements. The second part presents an application of the fast EIS technique for condition monitoring and evaluates the performance of the proposed fast EIS methodology in three different types of electrochemical devices: a Li-ion battery, a Li-S cell, and a polymer electrolyte membrane (PEM) fuel cell. Uniquely, in addition to theoretical aspects the book provides practical guidelines for implementation, commissioning, and exploitation of EIS for condition monitoring of electrochemical devices, making it a valuable resource for practicing engineers as well as researchers.
This book outlines methods to improve functioning of these polymer based devices - in particular, the multi-faceted cognition of these materials. In situ electrochemical techniques are studied to elucidate redox switching between non-conducting and conducting states. The book examines the advantages of combinations of in situ electrochemical techniques in a hyphenated mode for analyzing conducting polymers.
The study of electrochemical nanotechnology has emerged as researchers apply electrochemistry to nanoscience and nanotechnology. These two related volumes in the Modern Aspects of Electrochemistry Series review recent developments and breakthroughs in the specific application of electrochemistry and nanotechnology to biology and medicine. Internationally renowned experts contribute chapters that address both fundamental and practical aspects of several key emerging technologies in biomedicine, such as the processing of new biomaterials, biofunctionalization of surfaces, characterization of biomaterials, discovery of novel phenomena and biological processes occurring at the molecular level.
This book updates the latest advancements in new chemistries, novel materials and system integration of rechargeable batteries, including lithium-ion batteries and batteries beyond lithium-ion and addresses where the research is advancing in the near future in a brief and concise manner. The book is intended for a wide range of readers from undergraduates, postgraduates to senior scientists and engineers. In order to update the latest status of rechargeable batteries and predict near research trend, we plan to invite the world leading researchers who are presently working in the field to write each chapter of the book. The book covers not only lithium-ion batteries but also other batteries beyond lithium-ion, such as lithium-air, lithium-sulfur, sodium-ion, sodium-sulfur, magnesium-ion and liquid flow batteries.
Through this monograph, the pharmaceutical chemist gets familiar with the possibilities electroanalytical methods offer for validated analyses of drug compounds and pharmaceuticals. The presentation focuses on the techniques most frequently used in practical applications, particularly voltammetry and polarography. The authors present the information in such a way that the reader can judge whether the application of such techniques offers advantages for solving a particular analytical problem. Basics of individual electroanalytical techniques are outlined using as simple language as possible, with a minimum of mathematical apparatus. For each electroanalytical technique, the physical and chemical processes as well as the instrumentation are described. The authors also cover procedures for the identification of electroactive groups and the chemical and electrochemical processes involved. Understanding the principles of such processes is essential for finding optimum analytical conditions in the most reliable way. Added to this is the validation of such analytical procedures. A particularly valuable feature of this book are extensive tables listing numerous validated examples of practical applications. Various Indices according to the drug type, the electroactive group and the type of method as well as a subject and author index are also provided for easy reference.
This thesis describes novel strategies for the rational design of several cutting-edge high-efficiency photocatalysts, for applications such as water photooxidation, reduction, and overall splitting using a Z-Scheme system. As such, it focuses on efficient strategies for reducing energy loss by controlling charge transfer and separation, including novel faceted forms of silver phosphate for water photooxidation at record high rates, surface-basic highly polymerised graphitic carbon nitride for extremely efficient hydrogen production, and the first example of overall water splitting using a graphitic carbon nitride-based Z-Scheme system. Photocatalytic water splitting using solar irradiation can potentially offer a zero-carbon renewable energy source, yielding hydrogen and oxygen as clean products. These two ‘solar’ products can be used directly in fuel cells or combustion to provide clean electricity or other energy. Alternatively they can be utilised as separate entities for feedstock-based reactions, and are considered to be the two cornerstones of hydrogenation and oxidation reactions, including the production of methanol as a safe/portable fuel, or conventional catalytic reactions such as Fischer-Tropsch synthesis and ethylene oxide production. The main driving force behind the investigation is the fact that no photocatalyst system has yet reported combined high efficiency, high stability, and cost effectiveness; though cheap and stable, most suffer from low efficiency.
This work takes advantage of high-resolution silicon stencil masks to build air-stable complementary OTFTs using a low-temperature fabrication process. Plastic electronics based on organic thin-film transistors (OTFTs) pave the way for cheap, flexible and large-area products. Over the past few years, OTFTs have undergone remarkable advances in terms of reliability, performance and scale of integration. Many factors contribute to the allure of this technology; the masks exhibit excellent stiffness and stability, thus allowing OTFTs with submicrometer channel lengths and superb device uniformity to be patterned. Furthermore, the OTFTs employ an ultra-thin gate dielectric that provides a sufficiently high capacitance to enable the transistors to operate at voltages as low as 3 V. The critical challenges in this development are the subtle mechanisms that govern the properties of aggressively scaled OTFTs. These mechanisms, dictated by device physics, are well described and implemented into circuit-design tools to ensure adequate simulation accuracy.
This book represents the first rigorous treatment of thermoelectrochemistry, providing an overview that will stimulate electrochemists to develop and apply modern thermoelectrochemical methods. While classical static approaches are also covered, the emphasis lies on methods that make it possible to independently vary temperature such as in-situ heating of electrodes by means of electric current, microwaves or lasers. For the first time, "hot-wire electrochemistry" is examined in detail. The theoretical background presented addresses all aspects of temperature impacts in the context of electrochemistry.
This book focuses on nanotechnology in electrocatalysis for energy applications. In particular the book covers nanostructured electrocatalysts for low temperature fuel cells, low temperature electrolyzers and electrochemical valorization. The function of this book is to provide an introduction to basic principles of electrocatalysis, together with a review of the main classes of materials and electrode architectures. This book will illustrate the basic ideas behind material design and provide an introductory sketch of current research focuses. The easy-to-follow three part book focuses on major formulas, concepts and philosophies. This book is ideal for professionals and researchers interested in the field of electrochemistry, renewable energy and electrocatalysis.
Amperometric sensors, biosensors included, particularly rely on suitable electrode materials. Progress in material science has led to a wide variety of options that are available today. For the first time, these novel functional electrode coating materials are reviewed in this monograph, written by and for electroanalytical chemists. This includes intrinsically conducting, redox and ion-exchange polymers, metal and carbon nanostructures, silica based materials. Monolayers and relatively thick films are considered. The authors critically discuss preparation methods, in addition to chemical and physical characteristics of these new materials. They present various examples of emerging applications in electroanalysis. Due to its comprehensive coverage, the book will become an indispensable source for researchers working on the development and even proper use of new amperometric sensor systems.
Graphene has grasped the attention of academia and industry world-wide due its unique structure and reported advantageous properties. This was reflected via the 2010 Nobel Prize in Physics being awarded for groundbreaking experiments regarding the two-dimensional material graphene. One particular area in which graphene has been extensively explored is electrochemistry where it is potentially the world’s thinnest electrode material. Graphene has been widely reported to perform beneficially over existing electrode materials when used within energy production or storage devices and when utilised to fabricate electrochemical sensors. This book charts the history of graphene, depicting how it has made an impact in the field of electrochemistry and how scientists are trying to unravel its unique properties, which has, surprisingly led to its fall from grace in some areas. A fundamental introduction into Graphene Electrochemistry is given, through which readers can acquire the tools required to effectively explain and interpret the vast array of graphene literature. The readers is provided with the appropriate insights required to be able to design and implement diligent electrochemical experiments when utilising graphene as an electrode material.
This comprehensive presentation of the integral equation method as applied to electro-analytical experiments is suitable for electrochemists, mathematicians and industrial chemists. The discussion focuses on how integral equations can be derived for various kinds of electroanalytical models. The book begins with models independent of spatial coordinates, goes on to address models in one dimensional space geometry and ends with models dependent on two spatial coordinates. Bieniasz considers both semi-infinite and finite spatial domains as well as ways to deal with diffusion, convection, homogeneous reactions, adsorbed reactants and ohmic drops. Bieniasz also discusses mathematical characteristics of the integral equations in the wider context of integral equations known in mathematics. Part of the book is devoted to the solution methodology for the integral equations. As analytical solutions are rarely possible, attention is paid mostly to numerical methods and relevant software. This book includes examples taken from the literature and a thorough literature overview with emphasis on crucial aspects of the integral equation methodology.
Polyelectrolyte Complexes for Tailoring of Wood Fibre Surfaces. Polyelectrolyte Complexes in Flocculation Applications. Spontaneous Assembly and Induced Aggregation of Food Proteins. Polyelectrolyte Complexes of DNA and Polycations as Gene Delivery Vectors. Sizing, Shaping and Pharmaceutical Applications of Polyelectrolyte Complex Nanoparticles.
In this volume expert researchers in the field detail the operations of microchip capillary electrophoresis. Chapters focus on small molecule, biomolecule applications, various detection modes, and sample preparation approaches are described. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Microchip Capillary Electrophoresis Protocol aids scientists in continuing to study microchip capillary electrophoresis.
Various metallic or non-metallic surfaces are frequently treated by elewctrochemical methods (e.g. electrodeposition, electroless deposition, anodization, passivation, etc.) in order to achieve a desirable property important for biomedical applications. Applications include orthopedic or dental implants, dressings for wound healing and different skin diseases, surfaces for the prevention of bio-film formation of corrosion inhibition in biological media. The aim of this issue of Modern Aspects of Electrochemistry is to review the latest developments of the surface treatments for biomedical applications in relation to electrochemical science and technology. This new volume of Modern Aspect of Electrochemistry brings to the scientists, engineers and students summarized results and new concepts of surface treatments for the biomedical applications which may have significant influence for the future practical applications.
This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications.
This book covers broad aspects of the chemistry of -stacked polymers and low-molecular-weight molecules, from synthesis through theory. It is intended for graduate students and researchers in academia and industry and consists of chapters written by renowned scientists who have made significant contributions to this field in the past decade. -Stacked polymers and low-molecular-weight molecules are expected to replace main-chain conjugated polymers such as polyacetylenes and polythiophenes as organic conducting and energy-transferring substances that are important as materials for photo-electronic applications. -Stacked polymers and molecules have significant advantages over main-chain conjugated polymers, i.e., high solubility in solvents, large freedom in molecular design, and colorless nature.
This textbook offers original and new approaches to the teaching of electrochemical concepts, principles and applications. Throughout the text the authors provide a balanced coverage of the thermodynamic and kinetic processes at the heart of electrochemical systems. The first half of the book outlines fundamental concepts appropriate to undergraduate students and the second half gives an in-depth account of electrochemical systems suitable for experienced scientists and course lecturers. Concepts are clearly explained and mathematical treatments are kept to a minimum or reported in appendices. This book features: - Questions and answers for self-assessment - Basic and advanced level numerical descriptions - Illustrated electrochemistry applications This book is accessible to both novice and experienced electrochemists and supports a deep understanding of the fundamental principles and laws of electrochemistry.
The series Topics in Heterocyclic Chemistry presents critical reviews on present and future trends in the research of heterocyclic compounds. Overall the scope is to cover topics dealing with all areas within heterocyclic chemistry, both experimental and theoretical, of interest to the general heterocyclic chemistry community. The series consists of topic related volumes edited by renowned editors with contributions of experts in the field.
This review book is concerned with the synthesis, charge transport properties and practical applications of poly (o-aminophenol) (POAP) film electrodes. It is divided into three parts. The first one has a particular emphasis on problems of synthesis and structure of POAP. The second part deals with the mechanism of charge transfer and charge transport processes occurring in the course of the redox reactions of POAP. The third part describes the promising applications of POAP in the different fields of sensors, electrocatalysis, bioelectrochemistry, corrosion protection, among others. This review covers the literature on POAP in the time period comprised between 1987 and 2013.
Fuel cells are one of the most promising clean energy conversion devices that can solve the environmental and energy problems in our society. However, the high platinum loading of fuel cells - and thus their high cost - prevents their commercialization. Non- or low- platinum electrocatalysts are needed to lower the fuel cell cost. Electrocatalysis in Fuel Cells: A Non and Low Platinum Approach is a comprehensive book summarizing recent advances of electrocatalysis in oxygen reduction and alcohol oxidation, with a particular focus on non- and low-Pt electrocatalysts. All twenty four chapters were written by worldwide experts in their fields. The fundamentals and applications of novel electrocatalysts are discussed thoroughly in the book. The book is geared toward researchers in the field, postgraduate students and lecturers, and scientists and engineers at fuel cell and automotive companies. It can even be a reference book for those who are interested in this area.
This volume of Modern Aspects of Electrochemistry has contributions from significant individuals in electrochemistry. This 7 chapter book discusses electrodeposition and the characterization of alloys and composite materials, the mechanistic aspects of lead electrodeposition, electrophoretic deposition of ceramic materials onto metal surfaces and the fundamentals of metal oxides for energy conversion and storage technologies. This volume also has a chapter devoted to the anodization of aluminum, electrochemical aspects of chemical and mechanical polishing, and surface treatments prior to metallization of semiconductors, ceramics, and polymers. This volume of Modern Aspects of Electrochemistry is ideal for scientists, researchers, engineers, and students interested in the latest findings in the field of electrodeposition and surface finishing.
For the first time, the authors provide a comprehensive and consistent presentation of all techniques available in this field. They rigorously analyze the behavior of different electrochemical single and multipotential step techniques for electrodes of different geometries and sizes under transient and stationary conditions. The effects of these electrode features in studies of various electrochemical systems (solution systems, electroactive monolayers, and liquid-liquid interfaces) are discussed. Explicit analytical expressions for the current-potential responses are given for all available cases. Applications of each technique are outlined for the elucidation of reaction mechanisms. Coverage is comprehensive: normal pulse voltammetry, double differential pulse voltammetry, reverse pulse voltammetry and other triple and multipulse techniques, such as staircase voltammetry, differential staircase voltammetry, differential staircase voltcoulommetry, cyclic voltammetry, square wave voltammetry and square wave voltcoulommetry.
The expected end of the "oil age" will lead to increasing focus and reliance on alternative energy conversion devices, among which fuel cells have the potential to play an important role. Not only can phosphoric acid and solid oxide fuel cells already efficiently convert today's fossil fuels, including methane, into electricity, but other types of fuel cells, such as polymer electrolyte membrane fuel cells, have the potential to become the cornerstones of a possible future hydrogen economy. Featuring 21 peer-reviewed entries from the Encyclopedia of Sustainability Science and Technology, Fuel Cells offers concise yet comprehensive coverage of the current state of research and identifies key areas for future investigation. Internationally renowned specialists provide authoritative introductions to a wide variety of fuel cell types, and discuss materials, components, and systems for these technologies. The entries also cover sustainability and marketing considerations, including comparisons of fuel cells with alternative technologies.
The two volumes of Handbook of Gas Sensor Materials provide a detailed and comprehensive account of materials for gas sensors, including the properties and relative advantages of various materials. Since these sensors can be applied for the automation of myriad industrial processes, as well as for everyday monitoring of such activities as public safety, engine performance, medical therapeutics, and in many other situations, this handbook is of great value. Gas sensor designers will find a treasure trove of material in these two books. |
![]() ![]() You may like...
PVD for Microelectronics: Sputter…
Stephen M. Rossnagel, Ronald Powell, …
Hardcover
R3,456
Discovery Miles 34 560
Rotating Electrode Methods and Oxygen…
Wei Xing, Geping Yin, …
Hardcover
R3,408
Discovery Miles 34 080
Electrochemistry of Dihydroxybenzene…
Hanieh Ghadimi, Sulaiman Ab Ghani, …
Paperback
R1,256
Discovery Miles 12 560
Chemical Thermodynamics: Principles and…
J. Bevan Ott, Juliana Boerio-Goates
Hardcover
R3,082
Discovery Miles 30 820
Energy Storage and Civilization - A…
Graham Palmer, Joshua Floyd
Hardcover
R1,791
Discovery Miles 17 910
|