![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry > Electrochemistry & magnetochemistry
The field of electrochemical measurement, with respect to thermodynamics, kinetics and analysis, is widely recognised but the subject can be unpredictable to the novice, even if they have a strong physical and chemical background, especially if they wish to pursue quantitative measurements. Accordingly, some significant experiments are, perhaps wisely, never attempted, while the literature is sadly replete with flawed attempts at rigorous voltammetry.This book presents problems and worked solutions for a wide range of theoretical and experimental subjects in the field of voltammetry. The reader is assumed to have knowledge up to a Master's level of physical chemistry, but no exposure to electrochemistry in general, or voltammetry in particular, is required. The problems included range in difficulty from senior undergraduate to research level, and develop important practical approaches in voltammetry.The problems presented in the earlier chapters focus on the fundamental theories of thermodynamics, electron transfer and diffusion. Voltammetric experiments and their analysis are then considered, including extensive problems on both macroelectrode and microelectrode voltammetry. Convection, hydrodynamic electrodes, homogeneous kinetics, adsorption and electroanalytical applications are discussed in the later chapters, as well as problems on two rapidly developing fields of voltammetry: weakly supported media and nanoscale electrodes.There is huge interest in the experimental procedure of voltammetry at present, and yet no dedicated question and answer book with exclusive voltammetric focus exists, in spite of the inherent challenges of the subject. This book aims to fill that niche.
The field of electrochemical measurement, with respect to thermodynamics, kinetics and analysis, is widely recognised but the subject can be unpredictable to the novice, even if they have a strong physical and chemical background, especially if they wish to pursue quantitative measurements. Accordingly, some significant experiments are, perhaps wisely, never attempted, while the literature is sadly replete with flawed attempts at rigorous voltammetry.This book presents problems and worked solutions for a wide range of theoretical and experimental subjects in the field of voltammetry. The reader is assumed to have knowledge up to a Master's level of physical chemistry, but no exposure to electrochemistry in general, or voltammetry in particular, is required. The problems included range in difficulty from senior undergraduate to research level, and develop important practical approaches in voltammetry.The problems presented in the earlier chapters focus on the fundamental theories of thermodynamics, electron transfer and diffusion. Voltammetric experiments and their analysis are then considered, including extensive problems on both macroelectrode and microelectrode voltammetry. Convection, hydrodynamic electrodes, homogeneous kinetics, adsorption and electroanalytical applications are discussed in the later chapters, as well as problems on two rapidly developing fields of voltammetry: weakly supported media and nanoscale electrodes.There is huge interest in the experimental procedure of voltammetry at present, and yet no dedicated question and answer book with exclusive voltammetric focus exists, in spite of the inherent challenges of the subject. This book aims to fill that niche.
The first book to present a systematic approach to nanosystems Fully supplemented with actual examples and scores of figures and photo illustrations, Integrated Chemical Systems takes the discussion of nanotechnology and nanosystems out of the realm of speculation and into the real world. This book presents a detailed discussion of various approaches to the fabrication and characterization of nanosystems and offers a firm theoretical basis for the operation of electrochemical and photoelectrochemical systems, making analogies between synthetic and naturally occurring nanosystems. The author uses examples taken from his own groundbreaking research and that of others to create a clear picture of the progress that has been made in this exciting new area of research. Having established the state of the art, he goes on to offer realistic projections of future systems and their applications. Topics discussed include:
This work covers new developments in the field of molecular nanomagnetism, complementing previous books in this area (for example the volume by Gatteschi, Sessoli and Villain on Single Molecule Magnets). The book is written by experts in the field and is intended as a compilation of critical reviews of new areas rather than a comprehensive text.
New Edition: Understanding Voltammetry (3rd Edition)The power of electrochemical measurements in respect of thermodynamics, kinetics and analysis is widely recognized but the subject can be unpredictable to the novice even if they have a strong physical and chemical background, especially if they wish to pursue the study of quantitative measurements further. Accordingly, some significant experiments are perhaps wisely never attempted while the literature is sadly replete with flawed attempts at rigorous voltammetry.This textbook considers how to go about designing, explaining and interpreting experiments centered around various forms of voltammetry (cyclic, microelectrode, hydrodynamic, etc.). The reader is assumed to have attained a knowledge equivalent to Master's level of physical chemistry but no exposure to electrochemistry in general, or voltammetry in particular. While the book is designed to "stand alone", references to important research papers are given to provide an introductory entry into the literature.In comparison to the first edition, two new chapters - transport via migration and nanoelectrochemistry - are added. Minor changes and updates are also made throughout the textbook to facilitate enhanced understanding and greater clarity of exposition.
New Edition: Understanding Voltammetry (3rd Edition)The power of electrochemical measurements in respect of thermodynamics, kinetics and analysis is widely recognized but the subject can be unpredictable to the novice even if they have a strong physical and chemical background, especially if they wish to pursue the study of quantitative measurements further. Accordingly, some significant experiments are perhaps wisely never attempted while the literature is sadly replete with flawed attempts at rigorous voltammetry.This textbook considers how to go about designing, explaining and interpreting experiments centered around various forms of voltammetry (cyclic, microelectrode, hydrodynamic, etc.). The reader is assumed to have attained a knowledge equivalent to Master's level of physical chemistry but no exposure to electrochemistry in general, or voltammetry in particular. While the book is designed to "stand alone", references to important research papers are given to provide an introductory entry into the literature.In comparison to the first edition, two new chapters - transport via migration and nanoelectrochemistry - are added. Minor changes and updates are also made throughout the textbook to facilitate enhanced understanding and greater clarity of exposition.
This book is an in-depth review of the electrochemistry of semiconductors and electronic devices. For in the relentless pursuit of faster, more compact devices the limits of materials science are probed, setting ever higher goals for semiconductor purity, crystal uniformity and circuit density. This book reviews and describes possible electrochemical avenues toward each of these goals.
Faraday Discussions No. 140 will bring surface scientists and
electrochemists together and foster the development of both in situ
spectroscopic methods in electrochemistry and the study of single
crystal electrode surfaces. Electrocatalyst discovery: what can be learned from high throughput screening methods and theoretical calculations? Beyond fuel cells: the future of electrocatalysis.
This book introduces the principles of electrochemistry with a
special emphasis on materials science. This book is clearly
organized around the main topic areas comprising electrolytes,
electrodes, development of the potential differences in combining
electrolytes with electrodes, the electrochemical double layer,
mass transport, and charge transfer, making the subject matter more
accessible.
In-Situ Spectroscopic Studies of Adsorption at the Electrode and
Electrocatalysis is a new reference on in-situ spectroscopic
techniques/applications, fundamentals of electrocatalysis at
molecule level, and progresses within electrochemical surface
science. Presenting both essential background knowledge at graduate
level and original research within the fields of spectroscopy,
electrochemistry, and surface science.
Electrochemistry plays a key role in a broad range of research and
applied areas including the exploration of new inorganic and
organic compounds, biochemical and biological systems, corrosion,
energy applications involving fuel cells and solar cells, and
nanoscale investigations. The Handbook of Electrochemistry serves
as a source of electrochemical information, providing details of
experimental considerations, representative calculations, and
illustrations of the possibilities available in electrochemical
experimentation.
"Ion Correlations at Electrified Soft Matter Interfaces" presents an investigation that combines experiments, theory, and computer simulations to demonstrate that the interdependency between ion correlations and other ion interactions in solution can explain the distribution of ions near an electrified liquid/liquid interface. The properties of this interface are exploited to vary the coupling strength of ion-ion correlations from weak to strong while monitoring their influence on ion distributions at the nanometer scale with X-ray reflectivity and on the macroscopic scale with interfacial tension measurements. This thesis demonstrates that a parameter-free density functional theory that includes ion-ion correlations and ion-solvent interactions is in agreement with the data over the entire range of experimentally tunable correlation coupling strengths. The reported findings represent a significant advance towards understanding the nature and role of ion correlations in charged soft-matter. Ion distributions underlie many scientific phenomena and technological applications, including electrostatic interactions between charged biomolecules and the efficiency of energy storage devices. These distributions are determined by interactions dictated by the chemical properties of the ions and their environment, as well as the long-range nature of the electrostatic force. The presence of strong correlations between ions is responsible for counterintuitive effects such as like-charge attraction.
This invaluable book focuses on the mechanisms of formation of a solid-electrolyte interphase (SEI) on the electrode surfaces of lithium-ion batteries. The SEI film is due to electrochemical reduction of species present in the electrolyte. It is widely recognized that the presence of the film plays an essential role in the battery performance, and its very nature can determine an extended (or shorter) life for the battery. In spite of the numerous related research efforts, details on the stability of the SEI composition and its influence on the battery capacity are still controversial. This book carefully analyzes and discusses the most recent findings and advances on this topic.
This expert volume provides specialized coverage of the current state of the art in carbon gels. Carbon gels represent a promising class of materials with high added value applications and many assets, like the ability to accurately tailor their structure, porosity, and surface composition and easily dope them with numerous species. The ability to obtain them in custom shapes, such as powder, beads, monoliths, or impregnated scaffolds opens the way towards numerous applications, including catalysis, adsorption, and electrochemical energy storage, among others. Nevertheless, it remains a crucial question as to which design synthesis and manufacturing processes are viable from an economic and environmental point of view. The book represents the perspectives of renowned specialists in the field, specially invited to conduct a one-day workshop devoted to carbon gels as part of the 19th International Sol-Gel Conference, SOL-GEL 2017, held on September 3rd, 2017 in Liege, Belgium. Addressing properties and synthesis through applications and industry outlook, this book represents essential reading for advanced graduate students through practicing researchers interested in these exciting materials.
This book is a hard bound edition of a special issue (vol.
48/20-22) of the journal Electrochimica Acta. It summarizes the
highlights of the 53rd Annual meeting of the International Society
of Electrochemistry and Annual meeting of the GDCh-Fachgruppe
Angewandte Elektrochemie. The theme of the conference was
Electrochemistry in Molecular and Microscopic dimensions and was
based on the role of electrochemistry in the miniaturization of
chemical and physical methods. Topics covered are:
In this book, the development of next-generation batteries is introduced. Included are reports of investigations to realize high energy density batteries: Li-air, Li-sulfur, and all solid-state and metal anode (Mg, Al, Zn) batteries. Sulfide and oxide solid electrolytes are also reviewed.A number of relevant aspects of all solid-state batteries with a carbon anode or Li-metal anode are discussed and described: The formation of the cathode; the interface between the cathode (anode) and electrolyte; the discharge and charge mechanisms of the Li-air battery; the electrolyte system for the Li-air battery; and cell construction. The Li-sulfur battery involves a critical problem, namely, the dissolution of intermediates of sulfur during the discharge process. Here, new electrolyte systems for the suppression of intermediate dissolution are discussed. Li-metal batteries with liquid electrolytes also present a significant problem: the dendrite formation of lithium. New separators and electrolytes are introduced to improve the safety and rechargeability of the Li-metal anode. Mg, Al, and Zn metal anodes have been also applied to rechargeable batteries, and in this book, new metal anode batteries are introduced as the generation-after-next batteries.This volume is a summary of ALCA-SPRING projects, which constitute the most extensive research for next-generation batteries in Japan. The work presented in this book is highly informative and useful not only for battery researchers but also for researchers in the fields of electric vehicles and energy storage.
This reference explores the sources, characteristics, bioeffects, and health hazards of extremely low-frequency (ELF) fields and radio frequency radiation (RFR), analyzing current research as well as the latest epidemiological studies to assess potential risks associated with exposure and to develop effective safety guidelines. Compiles reports and investigations from four decades of study on the effect of nonionizing electromagnetic fields and radiation on human health Summarizing modern engineering approaches to control exposure, Electromagnetic Fields and Radiation discusses: -EM interaction mechanisms in biological systems -Explorations into the impact of EM fields on free radicals, cells, tissues, organs, whole organisms, and the population -Regulatory standards in the United States, Canada, Europe, and Asia Pacific -Evaluation of incident fields from various EM sources -Measurement surveys for various sites including power lines, substations, mobile systems, cellular base stations, broadcast antennas, traffic radar devices, heating equipment, and other sources -Dosimetry techniques for the determination of internal EM fields -Conclusions reached by the Food and Drug Administration, World Health Organization, and other institutions
Batteries are becoming increasingly important in today's world of portable electronic devices, along with the need to store electricity derived from solar and other renewable forms of energy, and the desire to introduce electric and hybrid electric vehicles to reduce emissions. Understanding Batteries is a must for all those seeking a straightforward explanation of how batteries are constructed, their operation, and the factors determining their performance and life. Beginning with a brief history of the development of batteries and a discussion of their applications and markets, the book goes on to outline the basic terminology and science of batteries. The different types of primary (non-rechargeable) and secondary (rechargeable) batteries are then described and emphasis is given to the importance of matching the battery to the intended application. Examples are given to demonstrate how to define and prioritise the various criteria which comprise the battery specification. Throughout, the chemistry is kept as simple as possible. Understanding Batteries will appeal to a wide range of readers, including electrical equipment manufacturers and users, engineers and technicians, chemistry and materials science students, teachers and the interested battery user.
This Proceedings contains the papers presented at the third
International Symposium on ""Electrochemical Microsystem
Technologies"," held in Garmisch-Partenkirchen, on 11-15 September
2000.
Capillary electrochromatography (CEC) is a new and exciting hybrid separation technique that seeks to exploit the combined advantages of both capillary electrophoresis (high efficiencies) and HPLC (mobile and stationary phase selectivity). It is a technique with tremendous potential, especially in the pharmaceutical and biomedical fields. This is the first book to be devoted to the topic and presents reviews by the world leaders in the field on the theory and development of the technique and current and potential future applications. Capillary Electrochromatography provides an excellent introduction to the field for graduates and professionals in industry and academia with an interest in separation science.
This book is the second volume in the Handbook of Surface Science
series and deals with aspects of the electronic structure of
surfaces as investigated by means of the experimental and
theoretical methods of physics. The importance of understanding
surface phenomena stems from the fact that for many physical and
chemical phenomena, the surface plays a key role: in electronic,
magnetic, and optical devices, in heterogenous catalysis, in
epitaxial growth, and the application of protective coatings, for
example. Therefore a better understanding and, ultimately, a
predictive description of surface and interface properties is vital
for the progress of modern technology. An investigation of surface
electronic structure is also central to our understanding of all
aspects of surfaces from a fundamental point of view. The chapters
presented here review the goals achieved in the field and map out
the challenges ahead, both in experiment and theory.
This volume illustrates the technological advances made in recent years in the development of battery and other energy storage systems. Discussions of present and near future battery technologies are included as well as emerging energy technologies that have the potential to impact on the portable electronics industry in the long term. This text provides a complete overview of the technology status and trends, with a focus on scientific developments, particularly in materials, that have led to technological breakthroughs.
This book summarizes the salient features of both equilibrium and
steady-state thermodynamic theory under a uniform postulatory
viewpoint. The emphasis is upon the formal aspects and logical
structure of thermodynamic theory, allowing it to emerge as a
coherent whole, unfettered by much of those details which - albeit
indispensable in practical applications - tend to obscure this
coherent structure. Largely because of this, statistical mechanics
and reference to molecular structure are, barring an occasional
allusion, avoided. The treatment is, therefore, 'classical', or -
using a perhaps more appropriate word - 'phenomenological'.
Traditionally, magnetic materials have been metals or, if inorganic compounds such as oxides, of continuous lattice type. However, in recent years chemists have synthesized increasing numbers of crystalline solids based on molecular building blocks in the form of coordination and organometallic complexes or purely organic molecules, which exhibit spontaneous magnetization. In striking contrast to conventional magnets, these materials are made from solutions close to room temperature rather than by metallurgical or ceramic methods. This book, which originates from contributions to a Discussion Meeting of The Royal Society of London, brings together many of the leading international practitioners in the field, who survey their own recent work and place it in the context of the wider fields of magnetism and supramolecular chemistry. All aspects of molecular-based magnets are addressed, including synthesis, structure-property relations and physical properties. Contents include details of the characterization of the first purely organic ferromagnet, the synthesis of high coercivity materials and a unique description of new materials with Curie temperatures well above ambient. A coherent survey of this rapidly developing field for the more general reader, Metal-Organic and Organic Molecular Magnets will also be welcomed by researchers and lecturers in materials science and inorganic or solid state chemistry.
Magnetochemistry is a highly interdisciplinary field that attracts the interest of chemists, physicists and material scientists. Although the general strategy of theoretical molecular magnetism has been in place for decades, its performance for extended systems of interacting magnetic units can be very complicated. Professor Boca's book treats the "mosaic" of the theoretical approaches currently used in the field.
|
![]() ![]() You may like...
Rotating Electrode Methods and Oxygen…
Wei Xing, Geping Yin, …
Hardcover
R3,408
Discovery Miles 34 080
Chemical Thermodynamics: Principles and…
J. Bevan Ott, Juliana Boerio-Goates
Hardcover
R3,082
Discovery Miles 30 820
Sustainable Nanosystems Development…
Mihai V. Putz, Marius Constantin Mirica
Hardcover
R6,815
Discovery Miles 68 150
Low Platinum Fuel Cell Technologies
Junliang Zhang, Shuiyun Shen
Hardcover
R2,942
Discovery Miles 29 420
|