![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > Electrochemistry & magnetochemistry
The text Modern Electrochemistry (authored by J. O'M. Bockris and A. K. N. Reddy and published by Plenum Press in 1970) was written between 1967 and 1969. The concept for it arose in 1962 in the Energy Conversion Center at the University of Pennsylvania, and it was intended to act as a base for interdisciplinary students and mature scientists hemists, physicists, biologists, metallurgists, and engineers-who wanted to know about electrochemical energy conversion and storage. In writing the book, the stress, therefore, was placed above all on lucidity in teaching physical electrochemistry from the beginning. Although this fundamentally undergraduate text continues to find purchasers 20 years after its birth, it has long been clear that a modernized edition should be written, and the plans to do so were the origin of the present book. However, if a new Bockris and Reddy was to be prepared and include the advances of the last 20 years, with the same degree of lucidity as characterized the first one, the depth of the development would have to be well short of that needed by professional electrochemists.
Medical Applications of Electrochemistry, a volume of the series Modern Aspects of Electrochemistry, illustrates the interdisciplinary nature of modern science by indicating the many current issues in medicine that are susceptible to solution by electrochemical methods. This book also suggests how personalized medicine can develop.
This book highlights the various topics in which luminescence and electrochemistry are intimately coupled. The topic of this book is clearly at the frontier between several scientific domains involving physics, chemistry and biology. Applications in these various fields naturally also need to be mentioned, especially concerning displays and advanced investigation techniques in analytical chemistry or for biomedical issues.
Recognized experts present incisive analyses of both fundamental and applied problems in this continuation of a highly acclaimed series. Topics in Number 35 include: Impedance spectroscopy with specific applications to electrode processes involving hydrogen; Fundamentals and contemporary applications of electroless metal deposition; The development of computational electrochemistry and its application to electrochemical kinetics; Analysis of electrolyte solutions at high concentrations; Applications of the Born theory to solvent polarization by ions and its extensions to treatment of kinetics of ionic reactions. GBP/LISTGBP
'A comprehensive review of the current state of the theoretical development in this important area of potential application of conducting polymers, and is very timely...The editor-author is to be congratulated for his marathon efforts and the production of a significant contribution to the literature.' -TRIP This three-part series provides undergraduate and graduate students in electrochemistry and materials science with a broad understanding of electroactive polymers. In Part I, renowned scientists examine the fundamental principles underlying electrochemical behavior of electroactive polymer materials. Contributors focus on the fundamentals of charge percolation and conductivity behavior associated with the membrane properties of electroactive polymer films. Part I also includes coverage of the phenomenon of heterogeneous redox catalysis at electroactive polymer modified electrodes.
Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.
Through this monograph, the pharmaceutical chemist gets familiar with the possibilities electroanalytical methods offer for validated analyses of drug compounds and pharmaceuticals. The presentation focuses on the techniques most frequently used in practical applications, particularly voltammetry and polarography. The authors present the information in such a way that the reader can judge whether the application of such techniques offers advantages for solving a particular analytical problem. Basics of individual electroanalytical techniques are outlined using as simple language as possible, with a minimum of mathematical apparatus. For each electroanalytical technique, the physical and chemical processes as well as the instrumentation are described. The authors also cover procedures for the identification of electroactive groups and the chemical and electrochemical processes involved. Understanding the principles of such processes is essential for finding optimum analytical conditions in the most reliable way. Added to this is the validation of such analytical procedures. A particularly valuable feature of this book are extensive tables listing numerous validated examples of practical applications. Various Indices according to the drug type, the electroactive group and the type of method as well as a subject and author index are also provided for easy reference.
The new edition of this classic text offers a comprehensive and accessible introduction to electrochemistry. It assumes a background in chemical thermodynamics and kinetics at the level of a standard undergraduate physical chemistry course, and it is intended for use as a text for a first course in electrochemistry or as a self-study book for chemists and scientists in related fields. The clear and concise text is rich with examples from the literature illustrating theory and electrochemical applications in analytical, organic, inorganic, and organometallic chemistry. Exercises at the end of each chapter extend and amplify this approach. The book contains extensive references to books and monographs, review literature, contemporary examples of electrochemical applications and historically important papers. Extensive discussion of voltammetric methods includes chronoamperometry, chronopotentiometry, cyclic voltammetry and steady-state voltammetric methods. Two chapters are devoted to organic, inorganic and organometallic reactions initiated by oxidation or reduction with electroanalytical methods. Many technological applications of thermodynamics are examined, including batteries and fuel cells, corrosion, electroplating and other metal finishing techniques, reduction of ores and purification of metals, and electrochemical production of inorganic and organic chemicals. Many sections in the new edition have been reworked to improve their clarity and accuracy, and new material has been added on microelectrodes, cyclic voltammetry and organic electrosynthesis. The chapter on the mechanisms of electrode processes now incorporates applications of microelectrode methods and emphasizes thestrenths and limitations of various other voltammetric techniques.
Magnetic Oxides offers a cohesive up-to-date introduction to magnetism in oxides. Emphasizing the physics and chemistry of local molecular interactions essential to the magnetic design of small structures and thin films, this volume provides a detailed view of the building blocks for new magnetic oxide materials already advancing research and development of nano-scale technologies. Clearly written in a well-organized structure, readers will find a detailed description of the properties of magnetic oxides through the prism of local interactions as an alternative to collective electron concepts that are more applicable to metals and semiconductors. Researchers will find Magnetic Oxides a valuable reference.
The last decade has witnessed significant advances in the ability to generate short light pulses throughout the optical spectrum. These developments have had a tremendous impact on the field of chemical dynamics. Fundamental questions concerning chemical reactions, once thought to be unaddressable, are now easily studied in real-time experiments. Ultrafast spectroscopies are currently being used to study a variety of fundamental chemical phenomena. This book focuses on some of the experimental and associated theoretical studies of reactions in clusters, liquid and solid media. Many of the advances in our understanding of the fundamental details of chemical reactivity result from the interplay of experiment and theory. This theme is present in many of the chapters, indicating the pervasiveness of a combined approach for eludicating molecular models of chemical reactions. With parallel developments in computer simulation, complex chemical sys tems are being studied at a molecular level. The discussions presented in this book recount many areas at the forefront of "ultrafast chemistry." They serve the purpose of both bringing the expert up to date with the work being done in many laboratories as well as introducing those not directly involved in this field to the diverse set of problems that can be studied. I hope that this book conveys the excitement that both I and the other authors in this volume feel about the field of ultrafast chemistry. John D. Simon 1993 1.D. Simon (ed.), Ultrafast Dynamics of Chemical Systems, vii."
The book introduces the outcomes of latest research in the field of Chemical Engineering. The book also illustrates the application of Chemical Engineering principles to provide innovative and state of the art solutions to problems associated with chemical industries. It covers a wide spectrum of topics in the area of Chemical Engineering such as Transfer operations, novel separation processes, adsorption, photooxidation, process control, modelling, and simulation. The book provides timely contribution towards implementation of recent approaches and methods in Chemical Engineering Research. It presents chapters focussed on several Chemical Engineering principles and methodologies of wide multidisciplinary applicability. The intended audience of this book will mainly consist of researchers, research students, and practitioners in Chemical Engineering and allied fields. The book can also serve researchers and students involved in multidisciplinary research.
The study of electrochemical nanotechnology has emerged as researchers apply electrochemistry to nanoscience and nanotechnology. These two related volumes in the Modern Aspects of Electrochemistry Series review recent developments and breakthroughs in the specific application of electrochemistry and nanotechnology to biology and medicine. Internationally renowned experts contribute chapters that address both fundamental and practical aspects of several key emerging technologies in biomedicine, such as the processing of new biomaterials, biofunctionalization of surfaces, characterization of biomaterials, discovery of novel phenomena and biological processes occurring at the molecular level.
This edition of Thermodynamics is a thoroughly revised, streamlined, and cor rected version of the book of the same title, first published in 1975. It is intended for students, practicing engineers, and specialists in materials sciences, metallur gical engineering, chemical engineering, chemistry, electrochemistry, and related fields. The present edition contains many additional numerical examples and prob lems. Greater emphasis is put on the application of thermodynamics to chemical, materials, and metallurgical problems. The SI system has been used through out the textbook. In addition, a floppy disk for chemical equilibrium calculations is enclosed inside the back cover. It contains the data for the elements, oxides, halides, sulfides, and other inorganic compounds. The subject material presented in chapters III to XIV formed the basis of a thermodynamics course offered by one of the authors (R.G. Reddy) for the last 14 years at the University of Nevada, Reno. The subject matter in this book is based on a minimum number of laws, axioms, and postulates. This procedure avoids unnecessary repetitions, often encountered in books based on historical sequence of development in thermodynamics. For example, the Clapeyron equation, the van't Hoff equation, and the Nernst distribution law all refer to the Gibbs energy changes of relevant processes, and they need not be presented as radically different relationships."
"Iron Phosphate Materials as Cathodes for Lithium Batteries" describes the synthesis and the chemical-physical characteristics of iron phosphates, and presents methods of making LiFePO4 a suitable cathode material for lithium-ion batteries. The author studies carbon's ability to increase conductivity and to decrease material grain size, as well as investigating the electrochemical behaviour of the materials obtained. "Iron Phosphate Materials as Cathodes for Lithium Batteries" also proposes a model to explain lithium insertion/extraction in LiFePO4 and to predict voltage profiles at various discharge rates. "Iron Phosphate Materials as Cathodes for Lithium Batteries" is written for postgraduate students and researchers in electrochemistry, R&D professionals and experts in electrochemical storage.
This volume chronicles the proceedings of the Symposium on Metallized Plastics: Fundamental and Applied Aspects held under the auspices of the Dielectrics and Insulation Division of the Electrochemical Society in Chicago, October 10-12, 1988. This was the premier symposium on this topic and if the comments from the attendees are any barometer of the success of a symposium then it was a grand success. Concomitantly, it has been decided to hold it on a regular basis (at intervals of 18 months) and the second event in this series is planned as a part of the Electrochemical Society meeting in Montreal, Canada, May 6-10, 1990. Metallized plastics find a legion of applications ranging from mundane to very sophisticated. A complete catalog of the various technological applications of metallized plastics will be prohibitively long, so here some eclectic examples should suffice to show why there is such high tempo of R&D activity in the arena of metallized plastics, and all signals indicate that this high tempo will continue unabated. For example, polymeric films are metallized for packaging (food and other products) purposes, and the applications of metallized plastics in the automotive industry are quite obvious. In the field of microelectronics and computer technology, insulators are metallized for interconnection and other functional purposes. Also plastics are metallized to provide electromagnetic shielding.
This volume contains the papers presented at the Sixth International Ion Exchange Conference organised by the SCI and held at Churchill College, Cambridge, UK, in July 1992. As on previous occasions, most recently in 1988, the organising committee did not engage plenary speakers but decided to solicit state-of-the-art contributions from the ion exchange community. This book contains the refereed papers presented at the meeting, whether in poster or oral form. Extra papers were presented at the meeting as posters because they were not available in time for refereeing purposes. The subject matter of the meeting and therefore the contents of the book is subdivided into seven separate topic areas as follows: resin developments; water treatment; fundamentals; biotechnology, food and pharmaceuticals; environmental and pollution control; membranes, inorganic materials and nuclear; and hydrometallurgy. The coverage of the meeting is similar to 1988 although there are fewer subdivisions on this occasion. The more restricted coverage this time reflects the smaller number of papers offered by authors. This is probably due to the world wide industrial recession which has affected commercial development and exploitation of the technology and restricts the ability of practitioners and academics to contribute to and attend international meetings. Nevertheless, the advances in biotechnology, growing concern about the environment and the. need for novel separation processes have provided sufficient impetus to stimulate a sufficient number of workers in the field.
This long-awaited and thoroughly updated version of the classic text (Plenum Press, 1970) explains the subject of electrochemistry in clear, straightforward language for undergraduates and mature scientists who want to understand solutions. Like its predecessor, the new text presents the electrochemistry of solutions at the molecular level. The Second Edition takes full advantage of the advances in microscopy, computing power, and industrial applications in the quarter century since the publication of the First Edition. Such new techniques include scanning-tunneling microscopy, which enables us to see atoms on electrodes; and new computers capable of molecular dynamics calculations that are used in arriving at experimental values. A description of the electrochemical stage - the high field region near the interface - is the topic of Chapter 6 and involves a complete rewrite of the corresponding chapter in the First Edition, particularly the various happenings which occur with organic molecules which approach surfaces in solution. The chapter on electrode kinetics retains material describing the Butler-Volmer equation from the First Edition, but then turns to many new areas, including electrochemical theories of potential-dependent gas catalysis. Chapter 8 is a new one devoted to explaining how electrochemists deal with the fast-changing nature of the electrode surface. Quantum Mechanics as the basis to electrode kinetics is given an entirely new look - up to and including considerations of bond-breaking reactions.
Recognized experts present incisive analysis of both fundamental and applied problems in this continuation of a highly acclaimed series. Topics discussed include: A review of the literature on the potential-of-zero charge by Trasatti and Lust. A thorough review and discussion of nonequilibrium fluctuations in corrosion processes. A wide-ranging discussion of conducting polymers, electrochemistry, and biomimicking processes. Microwave (photo)electrochemistry, from its origins to today's research opportunities, including its relation to electrochemistry. New fluorine cell design, from model development through preliminary engineering modeling, laboratory tests, and pilot plant tests. A comprehensive account of the major and rapidly developing field of the electrochemistry of electronically conducting polymers and their applications. These authoritative studies will be invaluable for researchers in engineering, electrochemistry, analytical chemistry, materials science, physical chemistry, and corrosion science.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued.
"Electrochemical Impedance Spectroscopy in PEM Fuel Cells" discusses one of the most powerful and useful diagnostic tools for various aspects of the study of fuel cells: electrochemical impedance spectroscopy (EIS). This comprehensive reference on EIS fundamentals and applications in fuel cells contains information about basic principles, measurements, and fuel cell applications of the EIS technique. Many illustrated examples are provided to ensure maximum clarity and observability of the spectra. "Electrochemical Impedance Spectroscopy in PEM Fuel Cells" will enable readers to explore the frontiers of EIS technology in PEM fuel cell research and other electrochemical systems. As well as being a useful text for electrochemists, it can also help researchers who are unfamiliar with EIS to learn the technique quickly and to use it correctly in their fuel cell research. Managers or entrepreneurs may also find this book a useful guide to accessing the challenges and opportunities in fuel cell technology.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued.
Recognized experts present incisive analysis of both fundamental and applied problems in this continuation of a highly acclaimed series. Topics discussed include: A thorough and mathematical treatment of periodic phenomena, with consideration of new theories about the transition between `order' and `chaos'; Impedance spectroscopy as applied to the study of kinetics and mechanisms of electrode processes; The use of stoichiometric numbers in mechanism analysis; The electro-osmotic dewatering of clays with important implications for the processing of industrial waste and geotechnical; stabilization; Magnetic effects in electrolytic processes and the electrolytic Hall effect; and The computer analysis and modeling of mass transfer and fluid flow. These authoritative studies will be invaluable for researchers in engineering, electrochemistry, analytical chemistry, materials science, physical chemistry, and corrosion science.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued.
In response to significant developments in sensor science and technology, this book offers insight into the various extended applications and developments of N4 macrocycle complexes in biomimetic electrocatalysis. Chapters are devoted to the chemistry, electronic and electrochemical properties of porphyrin- based polymetallated supramolecular redox catalysts and their applications in analytical and photoelectrochemical molecular devices; the use of porphyrins, phthalocyanines and related complexes as electrocatalysts for the detection of a wide variety of environmentally polluting and biologically relevant molecules; and the use of electropolymerized metalloporphyrin and metallophthalocyanine films as powerful materials for analytical tools, especially for sensing biologically relevant species. |
You may like...
|