![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry > Electrochemistry & magnetochemistry
The physicist Kamerlingh Onnes, who was the first to liquify helium (1908), had written on the walls of his laboratory in Leiden: "From measur ing to knowing." As true as this is at very low temperatures, it is just as applicable at the high temperatures of molten salts. Only on the basis of exact measurements by a plethora of experimental methods can any real understanding be reached of both classes of liquids. In both temperature ranges experimental difficulties are much greater than those encountered around ambient temperature. Molten salts often present a formidable challenge to the experimen talist, for example, because of corrosion and other materials problems. Applications of molten salts were for a long time based on empirical knowledge alone. This was true for the first application of molten salts in 1807, when Davy obtained sodium and potassium by electrolysis of the molten hydroxides. For 100 years the winning of aluminum has been based on the very nearly simultaneous invention by Hall and Heroult (1886) of the electrolysis of molten cryolite. The process, though essentially unchanged, has since been perfected owing to an improvement in our understanding of what actually happens, based on difficult measurements ofthe many variables. However, even now there are gaps in our knowledge."
-Encapsulation by Miniemulsion Polymerization By K. Landfester and C. K. Weiss -Enzyme-Encapsulated Layer-by-Layer Assemblies: Current Status and Challenges Toward Ultimate Nanodevices By K. Ariga, Q. Ji, and J. P. Hill -Non-LBL Assembly and Encapsulation Uses 1 of Nanoparticle-Shelled Hollow Spheres 2 By G.C. Kini, S. L. Biswal, and M. S. Wong -Polymersomes: A Synthetic Biological Approach to Encapsulation and Delivery By M. Massignani, H. Lomas, and G. Battaglia -Reaction Vessels Assembled by the Sequential Adsorption of Polymers By A.D. Price, A.P.R. Johnston, G.K. Such, and F. Caruso
Silicon-on-Insulator Technology: Materials to VLSI, Third Edition, retraces the evolution of SOI materials, devices and circuits over a period of roughly twenty years. Twenty years of progress, research and development during which SOI material fabrication techniques have been born and abandoned, devices have been invented and forgotten, but, most importantly, twenty years during which SOI Technology has little by little proven it could outperform bulk silicon in every possible way. The turn of the century turned out to be a milestone for the semiconductor industry, as high-quality SOI wafers suddenly became available in large quantities. From then on, it took only a few years to witness the use of SOI technology in a wealth of applications ranging from audio amplifiers and wristwatches to 64-bit microprocessors. This book presents a complete and state-of-the-art review of SOI materials, devices and circuits. SOI fabrication and characterization techniques, SOI CMOS processing, and the physics of the SOI MOSFET receive an in-depth analysis.
Bioenergetics, the topic of volume 5 of this Series, is concerned with the energetics, the kinetics, and the mechanisms of energy conversion in biological systems. This phenomenon can be investigated on diffe rent levels of complexity. On a global level the role of biological pro cesses for the steady state of our enviroment is considered. At the physiological level, the relation between energy input and the physiolo gical state of an organism is of interest, while at the cellular level the biochemical pathways for degradation and synthesis of all relevant substrates is investigated. At present the majority of bioenergetic stu dies pertain to the molecular level. The processes in a cell are cataly zed by a large number of proteins called enzymes. The enzymes in volved in energy transduction can be considered as molecular ma chines which transform energy from one form into another, or transfer energy from one process to another. Living systems operate far from equilibrium and are open in the ther modynamic sense, i. e. they exchange energy and matter with the sur roundings. Chapter 1 presents the principles of non equilibrium thermo dynamics applied to biological systems. About 0. 05% of the energy from the sunlight which reaches the surface of the earth is used by plants and algae as well as some bacteria to synthesize organic com pounds, and thus supplies all organisms with the energy necessary for life."
All-solid-state batteries have gained much attention as the next-generation batteries. This book is about various Li ion ceramic electrolytes and their applications to all-solid-state battery. It contains a wide range of topics from history of ceramic electrolytes and ion conduction mechanisms to recent research achievements. Here oxide-type and sulfide-type ceramic electrolytes are described in detail. Additionally, their applications to all-solid-state batteries, including Li-air battery and Li-S battery, are reviewed.Consisting of fundamentals and advanced technology, this book would be suitable for beginners in the research of ceramic electrolytes; it can also be used by scientists and research engineers for more advanced development.
This book has been planned and written by Dr. Hine with his knowledge and experience in electrochemical science and engineering for over thirty years since he joined with me at Kyoto University in 1948. This book is unique and is useful for engineers as well as scientists who are going to work in any interdisciplinary field connected with elec trochemistry. Science is sure to clarify the truth of nature as well as bring prosperity and an improvement to the welfare of human beings. The origin of the word "science" is the same as of "conscience," which means the truth of our heart. When we consider a scientific and technological subject, first we classify it into the components and/or factors involved, and then we clarify them individually. Second, we combine them to grasp the whole meaning and feature of the subject under discussion. Computers may help us greatly, but how to establish the software that will be most desirable for our purposes is of great importance. We need to make these efforts ourselves, and not decorate with borrowed plumes. With this concept in mind, this book is attractive because the author describes the basic science in electrochemistry and practice, and discusses the electrochemical engineering applications as a combination of science and technology."
The holding of an Advanced Study Institute on the topic of "Solid State Batteries" at this time represented a logical progression in a series of NATO-sponsored events. Summer Schools at Belgerati, Italy in 1972 and Ajaccio, Corsica in 1975 on the topic of "Solid -State IOllics" dealt with fundamental aspects of solid-state electro chemistry and materials science. The application of specific solid ionic conductors played a significant role in the Science Committee Institute on "Materials for Advanced Batteries" held at Aussois, France in 1979. Interest in these and related fields has grown substantially over this period, and is sustained today. Research and development programmes exist within universities, governmental research laboratories and industry, worldwide and a series of international conferences and collaborations have been set up. Advanced batteries, both secondary and primary, have a potentially important role o play in the development of many areas of tech nology in the late 20th century and beyond. Applications include stationary storage, vehicle traction and remote power sources, as well as industrial and domestic cordless products and consumer and military electronics. The concept of an all-so lid-state battery is not new but, until recently, their performance has precluded their use in other than specialist low power, primary, applications. Recent materials' developments, however, make the solid-state battery a real possibility in all of the application sectors mentioned above. Further, such cells offer many attractive features over alternative present-day and advanced systems."
This volume presents plenary lectures and invited papers that Were delivered during the Fourth Australian Conference on Electro chemistry held at The Flinders University of South Australia, 16-20th February 1976. EZeat~oahemi8try fo~ a Futu~e Soaiety was selected as the Conference theme since the organising committee were mindful of the rapid change in technological perspective which the world now faces. We no longer have a prospect of uncontrolled spontaneous expansion and change as the result of technological enterprise. Rather, we face the task of attempting to reach a state of very restricted growth. In the next few decades special accent must be placed on minimizing pollution and maximizing the efficient utilization of all available energy sources. With this in mind, the Conference organisers considered that a conventional electrochemistry symposium, with its divisions into the various academic aspects, would be less relevant than a meeting devoted to aspects of electrochemistry which may underlie parts of the new and necessary technology for the future state of affairs. What has actually been achieved by the Conference organisers is a balance between the ideals expressed and the resulting response from electrochemists. This response has a bias which reflects the dominance of certain resources, e.g. metallic minerals, within Australia. Consequently, the papers included in T~ends in EZeat~o ahemist~ cover subjects which are of both global and local concern.
We enthusiastically welcome this opportunity to introduce this major work of Gurevich, Pleskov, and Rotenberg to English-speaking readers since photoelectrochemistry has, in recent years, become very significant for modern energy transfer and energy conversion phenomena. While having its roots in early electrochemistry, this field, in its modern aspects, has had an important impact on knowledge of the production and state of solvated electrons and on photoassisted electrolysis at semiconductors. Photoeffects resulting in electron emission into solution have also given rise to new ways of understanding double-layer structure and measuring potentials of zero charge. Electrochemical photoemission studies have added to and comple- mented the literature of solvated electron chemistry arising from experiments with high-energy radiation. The authors' treatment of photoelectron emission phenomena at metal/ solution interfaces is thorough and quantitative and, we believe, will con- stitute a landmark in the development of this fundamentally interesting and practically important area of electrochemistry and photophysics. H. Wroblowa B. E. Conway v Foreword A characteristic feature of modern electrochemistry is the continually broadening utilization of nontraditional methods and development of new directions of research. A number of such approaches are based on illumina- tion techniques. First, irradiation is used in electrochemistry mainly as a research tool. Mention should be made here of methods such as electro- reflection, ellipsometry, internal reflection spectroscopy, interferometry of surface layers, and other techniques firmly established in experimental electrochemistry. Second, light directly affects electrode processes. In- vestigation of the latter phenomenon is the subject of photoelectrochemistry.
The idea of an "Advanced Study Institute" on the theme of electrode reactions on solid electrolytes was put forward by Dr. J. Dupuy at the meeting of the International Society for Electrochemistry in Eindhoven in September 1973. Through Dr. Dupuy, the Solid State Physics Department of Lyons University offered the Institute possibilities of accommodation in Corsica that seemed particularly tempting. The subject matter appealed to a number of people for a variety of reasons. A great deal of development work on applications comes up against interface phenomena which appreciably reduce anticipated performances. Numerous potential applications of specific electrodes or gauges appear that would benefit from a more systematic approach. From a more fundamental viewpoint, interface phenomena on ionic crystals are the subject of indepen dent investigations in quite distinct research fields such as solid state physics and electrochemistry. The choice of an interpretation from among the different models available is very often not a straightforward matter, and an attempt to promote a synthesis by bringing together the proponents of the various "schools" could not fail to be rewarding.
The storage of electroenergy is an essential feature of modem energy technologies. Unfortunately, no economical and technically feasible method for the solution of this severe problem is presently available. But electrochemistry is a favourite candidate from an engineering point of view. It promises the highest energy densities of all possible alternatives. If this is true, there will be a proportionality between the amount of electricity to be stored and the possible voltage, together with the mass of materials which make this storage possible. Insofar it is a matter of material science to develop adequate systems. Electricity is by far the most important secondary energy source. The present production rate, mainly in the thermal electric power stations, is in the order of 1.3 TW. Rechargeable batteries (RB) are of widespread use in practice for electroenergy storage and supply. The total capacity of primary and rechargeable batteries being exploited is the same as that of the world electric power stations. However, the important goal in the light of modem energy technology, namely the economical storage of large amounts of electricity for electric vehicles, electric route transport, load levelling, solar energy utilization, civil video & audio devices, earth and spatial communications, etc. will not be met by the presently available systems. Unless some of the new emerging electrochemical systems are established up to date, RB's based on aqueous acidic or alkali accumulators are mainly produced today.
This volume of Modern Aspects of Electrochemistry contains six chapters. The first four chapters are about phenomena of interest at the microscopic level and the last two are on phenomena at the macroscopic level. In the first chapter, Uosaki and Kita review various theoretical models that have been presented to describe the phenomena that occur at an electrolyte/ semiconductor interface under illumination. In the second chapter, Orazem and Newman discuss the same phenomena from a different point of view. In Chapter 3, Bogus lavsky presents state-of-the-art considerations of transmembrane potentials and other aspects of active transport in biological systems. Next, Burke and Lyons present a survey of both the theoretical and the experimental work that has been done on hydrous oxide films on several metals. The last two chapters cover the topics of the production of chlorine and caustic and the phenomena of electrolytic gas evol ution. In Chapter 5, Hine et al. describe the engineering aspects of the three processes used in the chi or-alkali industry, and in Chapter 6, Sides reviews the macroscopic phenomena of nucleation, growth, and detachment of bubbles, and the effect of bubbles on the conduc tivity of and mass transfer in electrolytes.
The field of Supramolecular chemistry has reached a high level of sophistication and maturity, especially in the last 5-10 years. The sophistication is primarily evident in the highly complex chemical architectures that have been synthesized to accomplish specific functions such as selective binding and transport of substrates, in catalysis, and for the formation of assemblies, to name just a few of the applications. Many other molecular structures have been synthesized to form unusual materials with interesting and/or useful properties. From this point of view, the field is mature, as would have been anticipated from its historical development, starting in 1967 with Pedersen and the crown ethers. Since that time, the field has evolved mainly from a synthetic organic perspective. There are notable exceptions to this statement, but in general it holds true that the major advances were made in the laboratories of organic chemists with considerable topological insight. by The design and synthesis of the molecules was also partly guided physical insight provided by measurements and calculations done by physical chemists. As a consequence, many chemical systems were synthesized in relatively small amounts to afford their full characterization but not in large enough quantities to fully explore their intended properties or structures. Thus in the decades of the 70's and 80's physical chemists played an important role in guiding the future directions in the field, providing needed structural and energetic information and providing improved experimental designs.
This book consists of contributions by participants in the Symposium "Spectroscopic and Electrochemical Characterizat.ion of Solute Species in Non~Aqueous Solvents" which took place at the American Chemical Society Meeting, Division of Analytical Chemistry, August 31 and September I, 1976, San Francisco, California. The manuscripts were submitted to the editor during the first half of 1977 and, in most cases, represent reviews of selected research topics in the broad area of characterization of solute species in non~aqueous solvents. In organizing this Symposium, I attempted to bring together a significantly large group of research workers involved in spectro scopic and electrochemical studies in the three large classes of non-aqueous solvents ~ organic solvents, covalent inorganic sol vents and molten salts. The experimental apprcaches and problems, such as avoidance of traces of moisture and oxygen, are frequently similar for all types of non-aqueous solvents. It is hoped that this volume will be useful to all concerned with chemistry in non-aqueous solvents. Gleb l>lamantov , Contents 1. IDENTIFICATION AND SYSTEMIZATION OF SOLVENT PROPERTIES INVOLVED IN THE LIGAND SUBSTITUTION KINETICS OF LABILE COMPLEXES OF NICKEL(II) J. F. Coetzee, D. Frollini, C. G. Karakatsanis, E. J.
1.1. Definition of Terms-Thrombosis, Thromboembolic Disease, Atherosclerosis, and Blood Clotting The terms heart attack or myocardial infarction are more commonly used than thrombosis. The infarct-muscle destruction is simply the end result and thrombosis is the real cause of the heart attack. Thrombosis may be defined as the process of formation of a coalescent or agglutinated solid mass of blood components in the blood stream. Thrombi formed in either arteries or veins often cause occlusion in the vascular system and prevent blood flow. Obstruc to the blood vessel usually occurs at the site where the thrombi deposit. tion Furthermore, thrombi may break loose, travel through the circulating blood stream, and cause obstruction at some distal point of narrowing elsewhere. The mass or thrombus that moves is referred to as an "embolus." The two phenomena are lumped together under the term thromboembolic disease. Thrombosis that reduces blood supply to the heart is the primary factor in heart attacks."
It gives us pleasure in writing the Preface to this volume, in which we tried to bring together a number of stimulating and interesting people discussing physical electrochemistry. The first chapter, by Ashok Vijh, gives a remarkable account of electrochemistry as looked at from a physicist's point of view. Among the revelations of the chapter is that in a recent survey of leading areas in Science, two out of fifteen areas chosen were electrochemical and these two were the only chemical subjects chosen. In Mikhail Vorotyntsev's chapter, one finds a very modern study of the double layer, but tenuously connected with the simpler studies made in the safe harbor of mercury. In the pioneering chapter by Pons et al., one is looking at a cutting edge of electrochemistry at this time-the use of IR spectros copy in modes which allow the first practical determinations of the spectra of adsorbed species at the interface-an area pioneered by Pons himself. In Chapter 4, we have reached photoelectrochemistry once more, but now Tributsch speaks about what has rapidly become the major area of that topic, photoelectrocatalysis. Close to this chapter, and indeed intellectually connected with it, is that by Schmickler and Schultze about electron transfer reac tions at oxide-covered metal electrodes in which theories which are still relatively dubious for metal-solution surfaces are applied to complex systems involving oxides."
Recent progress in the synthesis of nanomaterials and our fundamental understanding of their properties has led to significant advances in nanomaterial-based gas, chemical and biological sensors. Leading experts around the world highlight the latest findings on a wide range of nanomaterials including nanoparticles, quantum dots, carbon nanotubes, molecularly imprinted nanostructures or plastibodies, nanometals, DNA-based structures, smart nanomaterials, nanoprobes, magnetic nanomaterials, organic molecules like phthalocyanines and porphyrins, and the most amazing novel nanomaterial, called graphene. Various sensing techniques such as nanoscaled electrochemical detection, functional nanomaterial-amplified optical assays, colorimetry, fluorescence and electrochemiluminescence, as well as biomedical diagnosis applications, e.g. for cancer and bone disease, are thoroughly reviewed and explained in detail. This volume will provide an invaluable source of information for scientists working in the field of nanomaterial-based technology as well as for advanced students in analytical chemistry, biochemistry, electrochemistry, material science, micro- and nanotechnology.
No. 29 offers new insights into the energies of activation of electrode reactions and the interfacial behavior of proteins.
The mechanism of an elementary act is undoubtedly one of the most fundamental problems of chemical and, in particular, electro chemical kinetics. Although this problem has fascinated scientists for quite a long time, it was only in the late fifties and early sixties that it began to be actively investigated for charge transfer reactions. Owing to the development of new methods in the analysis of this problem, significant advancements were made in theoretical as well as experimental studies. These investigations showed that the physical mechanism of charge transfer in all processes including heterogeneous electrochemical and homogeneous chemical and bio chemical processes is basically the same. Hence, the results ob tained in the field of electrochemical kinetics are relevant to the understanding of homogeneous chemical reactions as well. This book endeavors to summarize the results of investigations carried out during the last two decades. It is based on the author's monograph "Electrode Reactions: The Mechanism of an Elementary Act" (Nauka, 1979). As compared to the first version, the book has been considerably revised and enlarged not only to include a large body of data published between 1978 and 1982, but also to analyze in detail the links between electrochemical and homogeneous, in particular enzymatic, kinetics. As a result, a new chapter has been added to the book. The change in the title reflects the fact that the material contained in the book is not restricted to an investigation of purely electrochemical problems."
The present volume is comprised of six chapters covering topics having both fundamental and substantial applied significance in electrochemistry: ion-exchange membrane behavior, corrosion and metal deposition, semiconductor charge injection, and the electro- catalytic properties of carbon. In the first chapter, Verbrugge and Pintauro examine transport models for ion-exchange membranes using approaches from the direction of electrochemical thermodynamics of irreversible proces- ses and others. The properties ofth~ models are examined quantita- tively in some mathematical detail. Drazic, in Chapter 2, gives an up-to-date account of advances in our knowledge of the "active" dissolution of iron in corrosion processes and the accompanying processes of H2 evolution and H sorption. The important process of O reduction in iron corrosion 2 is also considered, together with the more controllable aspect of anodic dissolution and cathodic deposition, as well as the influence of anions on the dissolution kinetics of iron in aqueous medium. An important aspect of metal plating technology is the use of a modulated or pulsed-current regime to provide better control over deposit morphology. In two chapters, one by Popov and Mak- simovic and the other by Pesco and Cheh, complementary aspects of this important technique are examined in detail: from the theo- retical electrode-kinetic direction, taking into account the important nonsteady diffusion situation, and from the practical direction of examining the morphologies of electrodeposits generated under various AC modulated or pulsed-current regimes.
Electrochemistry is a discipline of wide scientific and technological interest. Scientifically, it explores the electrical properties of materials and especially the interfaces between different kinds of matter. Technologically, electrochemistry touches our lives in many ways that few fully appreciate; for example, materials as diverse as aluminum, nylon, and bleach are manufactured electrochemically, while the batteries that power all manner of appliances, vehicles, and devices are the products of electrochemical research. Other realms in which electrochemical science plays a crucial role include corrosion, the disinfection of water, neurophysiology, sensors, energy storage, semiconductors, the physics of thunderstorms, biomedical analysis, and so on. This book treats electrochemistry as a science in its own right, albeit resting firmly on foundations provided by chemistry, physics, and mathematics. Early chapters discuss the electrical and chemical properties of materials from which electrochemical cells are constructed. The behavior of such cells is addressed in later chapters, with emphasis on the electrodes and the reactions that occur on their surfaces. The role of transport to and from electrodes is a topic that commands attention, because it crucially determines cell efficiency. Final chapters deal with voltammetry, the methodology used to investigate electrode behavior. Interspersed among the more fundamental chapters are chapters devoted to applications of electrochemistry: electrosynthesis, power sources, green electrochemistry , and corrosion. Electrochemical Science and Technology is addressed to all who have a need to come to grips with the fundamentals of electrochemistry and to learn about some of its applications. It will constitute a text for a senior undergraduate or graduate course in electrochemistry. It also serves as a source of material of interest to scientists and technologists in various fields throughout academia, industry, and government chemists, physicists, engineers, environmentalists, materials scientists, biologists, and those in related endeavors. This book: * Provides a background to electrochemistry, as well as treating the topic itself. * Is accessible to all with a foundation in physical science, not solely to chemists. * Is addressed both to students and those later in their careers. * Features web links (through www.wiley.com/go/EST) to extensive material that is of a more tangential, specialized, or mathematical nature. * Includes questions as footnotes to support the reader s evolving comprehension of the material, with fully worked answers provided on the web. * Provides web access to Excel(R) spreadsheets which allow the reader to model electrochemical events. * Has a copious Appendix of relevant data.
The Li-ion battery market is growing fast due to its ever increasing number of applications, from electric vehicles to portable devices. These devices are in demand due to safety reasons, energy efficiency, high power density and long life duration, which drive the need for more efficient electrochemical energy storage systems. The aim of this book is to provide the challenges and perspectives for Li-ion batteries (chapters 1 and 2), at the negative electrode as well as at the positive electrode, and for technologies beyond the Li-ion with the emerging Na-ion batteries and multivalent (Mg, Al, Ca, etc) systems (chapters 4 and 5). The aim is also to alert on the necessity to develop the recycling methods of the millions of produced batteries which are going to further flood our societies (chapter 3), and also to continuously increase the safety of the energy storage systems. For the latter challenge, it is interesting to seriously consider polymer electrolytes and batteries as an alternative (chapter 6).This book will take readers inside recent breakthroughs made in the electrochemical energy systems. It is a collaborative work of experts from the most known teams in the batteries field in Europe and beyond, from academics as well as from manufacturers.
As stated by Buckminster Fuller in Operation Manual for Spaceship Earth, "Synergy is the behavior of whole systems unpredicted by separately observed behaviors of any of the system's separate parts." In a similar vein, one might define an intellectual synergy as "an improvement in our understanding of the behavior of a system unpredicted by separately acquired viewpoints of the activities of such a system." Such considerations underlie, and provide a motivation for, an interdisciplinary approach to the problem of unraveling the deeper mysteries of cellular metabolism and organization, and have led a number of pioneering spirits, many represen ted in the pages which follow, to consider biological systems from an elec trochemical standpoint. is itself, of course, an interdisciplinary branch of Now electrochemistry science, and there is no doubt that many were introduced to it via Bockris and Reddy's outstanding, wide-ranging and celebrated textbook Modern Electrochemistry. If I am to stick my neck out, and seek to define bioelec trochemistry, I would take it to refer to "the study of the mutual interac tions of electrical fields and biological materials, including living systems.""
This volume is concerned with methods that are available for the calculation of for mation constants, in particular computational procedures. Although graphical meth ods have considerable value in the exploration of primary (raw) data they have been overtaken by computational methods, which, for the most part, take primary data and return the refined formation constants. Graphical methods are now considered com plementary to these general computational procedures. This volume brings together programs that span the lifetime of computer-assisted determination of formation constants. On one hand the reader will find listings of programs that are derived from LETAGROP (b.l961) and the GAUSS-G/SCOGS (b. 1962) families. On the other hand programs are presented that are the newest mem bers of the SCOGS lineage and from the on-going MINIQUAD series. One program is presented that describes a computational approach to the classical Hedstrom Osterberg methods; another that takes care of electrode calibration in a simple yet rigorous manner. Potentiometry and spectrophotometry are the most popular experimental tech niques for equilibrium studies, and the programs in this volume reflect this. Four programs handle potentiometric data, two will process spectrophotometric data, and one makes use of both types of data separately or in combination." |
![]() ![]() You may like...
Energy Storage and Civilization - A…
Graham Palmer, Joshua Floyd
Hardcover
R1,856
Discovery Miles 18 560
Rotating Electrode Methods and Oxygen…
Wei Xing, Geping Yin, …
Hardcover
R5,188
Discovery Miles 51 880
Synthesis of Functional Nanomaterials…
Huan Pang, Xiaoyu Cao, …
Hardcover
R4,586
Discovery Miles 45 860
Electrocatalysis and Electrocatalysts…
Lindiwe Eudora Khotseng
Hardcover
R3,520
Discovery Miles 35 200
Micro-Optics and Energy - Sensors for…
Jacob J. Lamb, Bruno G. Pollet
Hardcover
R4,584
Discovery Miles 45 840
Sustainable Nanosystems Development…
Mihai V. Putz, Marius Constantin Mirica
Hardcover
R7,111
Discovery Miles 71 110
|