![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > Electrochemistry & magnetochemistry
This book honors Professor. John O'M. Bockris, presenting authoritative reviews on some of the subjects to which he made significant contributions - i.e., electrocatalysis, fuel cells, electrochemical theory, electrochemistry of single crystals, in situ techniques, rechargeable batteries, passivity, and solar-fuels - and revealing the roles of electrochemical science and technology in achieving a sustainable society. Electrochemistry has long been an object of study and is now growing in importance, not only because of its fundamental scientific interest but also because of the central role it is expected to play in a future sustainable society. Professor John O'M. Bockris contributed greatly to various aspects of fundamental and applied electrochemistry - such as the structure of the double layer, kinetics and mechanism of the electrochemistry of hydrogen and oxygen, electrocatalysis, adsorption and electrochemical oxidation of small organic molecules, fuel cells, electrocrystallization, theoretical electrochemistry, new methods, photoelectrochemistry, bioelectrochemistry, corrosion and passivity, hydrogen in metals, ionic solutions and ionic liquids, and molten silicates and glasses, as well as socio-economic issues such as the hydrogen economy - for over half a century from 1945 until his retirement in 1997.
This book presents a design-driven investigation into smart materials developed by chemists, physicists, materials and chemical engineers, and applied by designers to consumer products, buildings, interfaces, or textiles. Introducing a class of smart materials (referred to as stimuli-responsive, morphing or kinetic materials) that move and change their shape in response to stimuli, the book presents their characteristics, advantages, potentials, as well as the difficulties involved in their application. The book also presents a large number of case studies on products, projects, concepts, and experiments employing smart materials, thus mapping out new design territories for these innovative materials. The case studies involve different fields of design, including product, interior, fashion, and communication design. Reflecting the growing demand for sustainable and human-centered design agendas, the book explores and reveals the role and influence of these new materials and technologies on design and human experience, and discusses how they can be used to redefine our objects and spaces so as to promote more resilient environments. The book offers an intriguing and valuable resource for design professionals, engineers, scientists and students alike.
This book focuses on the design, fabrication and applications of carbon-based materials for lithium-sulfur (Li-S) batteries. It provides insights into the localized electrochemical transition of the "solid-solid" reaction instead of the "sulfur-polysulfides-lithium sulfides" reaction through the desolvation effect in subnanometer pores; demonstrates that the dissolution/diffusion of polysulfide anions in electrolyte can be greatly reduced by the strong binding of sulfur to the oxygen-containing groups on reduced graphene oxide; manifests that graphene foam can be used as a 3D current collector for high sulfur loading and high sulfur content cathodes; and presents the design of a unique sandwich structure with pure sulfur between two graphene membranes as a very simple but effective approach to the fabrication of Li-S batteries with ultrafast charge/discharge rates and long service lives. The book offers an invaluable resource for researchers, scientists, and engineers in the field of energy storage, providing essential insights, useful methods, and practical ideas that can be considered for the industrial production and future application of Li-S batteries.
This book provides comprehensive coverage of Lithium (Li) metal anodes for rechargeable batteries. Li is an ideal anode material for rechargeable batteries due to its extremely high theoretical specific capacity (3860 mAh g-1), low density (0.59 g cm-3), and the lowest negative electrochemical potential ( 3.040 V vs. standard hydrogenelectrodes). Unfortunately, uncontrollable dendritic Li growth and limited Coulombic efficiency during Li deposition/stripping inherent in these batteries have prevented their practical applications over the past 40 years. With the emergence of post Liion batteries, safe and efficient operation of Li metal anodes has become an enabling technology which may determine the fate of several promising candidates for the next generation energy storage systems, including rechargeable Li-air batteries, Li-S batteries, and Li metal batteries which utilize intercalation compounds as cathodes. In this work, various factors that affect the morphology and Coulombic efficiency of Li anodes are analyzed. The authors also present the technologies utilized to characterize the morphology of Li deposition and the results obtained by modeling of Li dendrite growth. Finally, recent developments, especially the new approaches that enable safe and efficient operation of Li metal anodes at high current densities are reviewed. The urgent need and perspectives in this field are also discussed. The fundamental understanding and approaches presented in this work will be critical for the applicationof Li metal anodes. The general principles and approaches can also be used in other metal electrodes and general electrochemical deposition of metal films.
This brief reviews the fundamentals, recent developments, challenges and prospects of Li-S and Li-O2 batteries, including fundamental research and potential applications. It starts with a brief overview encompassing the current state of Li-S and Li-O2 battery technology. It then provides general information on Li-S and Li-O2 batteries, including the electrochemical processes and battery components. The following sections focus on the historical and recent development of Li-S and Li-O2 batteries respectively, offering detailed insights into the key material development, cell assembly, diagnostic test and mechanism of electrolyte decomposition. Lastly, it focuses on the main promising applications of Li-S and Li-O2 batteries together with their challenges and potential
The brief gives a comprehensive overview of the polysaccharide applications in the field of battery materials. Included is a historic overview as well as recent developments in the field including new battery types and chemistries. Written in an accessible style by academics, it is aimed at those new to the field as well as individuals who have interest in novel polysaccharide applications. Aimed at advanced undergraduates, academic and industrial researchers and professionals studying or using biobased polymers.
This book offers a review of electrochemical impedance spectroscopy (EIS) and its application in online condition monitoring of electrochemical devices, focusing on the practicalities of performing fast and accurate EIS. The first part of the book addresses the theoretical aspects of the fast EIS technique, including stochastic excitation signals, time-frequency signal processing, and statistical analysis of impedance measurements. The second part presents an application of the fast EIS technique for condition monitoring and evaluates the performance of the proposed fast EIS methodology in three different types of electrochemical devices: a Li-ion battery, a Li-S cell, and a polymer electrolyte membrane (PEM) fuel cell. Uniquely, in addition to theoretical aspects the book provides practical guidelines for implementation, commissioning, and exploitation of EIS for condition monitoring of electrochemical devices, making it a valuable resource for practicing engineers as well as researchers.
This book introduces the reader to the quantum theories needed to describe the interactions of diatomic molecules with electromagnetic fields and systematically discusses the effects of static and dynamic electric and magnetic fields on the rotational, fine, and hyperfine structure of molecules. It illustrates how the concepts developed in ultracold physics research have lead to what may be the beginning of controlled chemistry in the fully quantum regime. The theories described are applied to discuss examples from research on trapping molecules in electromagnetic fields, laser control of molecular rotations and external field control of microscopic intermolecular interactions. The book presents the description of scattering theory for molecules in electromagnetic fields and is written to be a practical guide for students working on various aspects of molecular interactions.
This book describes various carbon nanomaterials and their unique properties, and offers a detailed introduction to graphene-carbon nanotube (CNT) hybrids. It demonstrates strategies for the hybridization of CNTs with graphene, which fully utilize the synergistic effect between graphene and CNTs. It also presents a wide range of applications of graphene-CNT hybrids as novel materials for energy storage and environmental remediation. Further, it discusses the preparation, structures and properties of graphene-CNT hybrids, providing interesting examples of three types of graphene-CNT hybrids with different nanostructures. This book is of interest to a wide readership in various fields of materials science and engineering.
This edited volume presents research results of the PPP European Green Vehicle Initiative (EGVI), focusing on electric vehicle batteries. Electrification is one road towards sustainable road transportation, and battery technology is one of the key enabling technologies. However, at the same time, battery technology is one of the main obstacles for a broad commercial launch of electric vehicles. This book includes research contributions which try to bridge the gap between research and innovation in the field of battery technology for electric vehicles. The target audience primarily comprises researchers and experts in the field.
Amperometric sensors, biosensors included, particularly rely on suitable electrode materials. Progress in material science has led to a wide variety of options that are available today. For the first time, these novel functional electrode coating materials are reviewed in this monograph, written by and for electroanalytical chemists. This includes intrinsically conducting, redox and ion-exchange polymers, metal and carbon nanostructures, silica based materials. Monolayers and relatively thick films are considered. The authors critically discuss preparation methods, in addition to chemical and physical characteristics of these new materials. They present various examples of emerging applications in electroanalysis. Due to its comprehensive coverage, the book will become an indispensable source for researchers working on the development and even proper use of new amperometric sensor systems.
This comprehensive presentation of the integral equation method as applied to electro-analytical experiments is suitable for electrochemists, mathematicians and industrial chemists. The discussion focuses on how integral equations can be derived for various kinds of electroanalytical models. The book begins with models independent of spatial coordinates, goes on to address models in one dimensional space geometry and ends with models dependent on two spatial coordinates. Bieniasz considers both semi-infinite and finite spatial domains as well as ways to deal with diffusion, convection, homogeneous reactions, adsorbed reactants and ohmic drops. Bieniasz also discusses mathematical characteristics of the integral equations in the wider context of integral equations known in mathematics. Part of the book is devoted to the solution methodology for the integral equations. As analytical solutions are rarely possible, attention is paid mostly to numerical methods and relevant software. This book includes examples taken from the literature and a thorough literature overview with emphasis on crucial aspects of the integral equation methodology.
This book focuses on nanotechnology in electrocatalysis for energy applications. In particular the book covers nanostructured electrocatalysts for low temperature fuel cells, low temperature electrolyzers and electrochemical valorization. The function of this book is to provide an introduction to basic principles of electrocatalysis, together with a review of the main classes of materials and electrode architectures. This book will illustrate the basic ideas behind material design and provide an introductory sketch of current research focuses. The easy-to-follow three part book focuses on major formulas, concepts and philosophies. This book is ideal for professionals and researchers interested in the field of electrochemistry, renewable energy and electrocatalysis.
The book focuses on the solid-state physics, chemistry and electrochemistry that are needed to grasp the technology of and research on high-power Lithium batteries. After an exposition of fundamentals of lithium batteries, it includes experimental techniques used to characterize electrode materials, and a comprehensive analysis of the structural, physical, and chemical properties necessary to insure quality control in production. The different properties specific to each component of the batteries are discussed in order to offer manufacturers the capability to choose which kind of battery should be used: which compromise between power and energy density and which compromise between energy and safety should be made, and for which cycling life. Although attention is primarily on electrode materials since they are paramount in terms of battery performance and cost, different electrolytes are also reviewed in the context of safety concerns and in relation to the solid-electrolyte interface. Separators are also reviewed in light of safety issues. The book is intended not only for scientists and graduate students working on batteries but also for engineers and technologists who want to acquire a sound grounding in the fundamentals of battery science arising from the interaction of electrochemistry, solid state materials science, surfaces and interfaces.
This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications.
For the first time, the authors provide a comprehensive and consistent presentation of all techniques available in this field. They rigorously analyze the behavior of different electrochemical single and multipotential step techniques for electrodes of different geometries and sizes under transient and stationary conditions. The effects of these electrode features in studies of various electrochemical systems (solution systems, electroactive monolayers, and liquid-liquid interfaces) are discussed. Explicit analytical expressions for the current-potential responses are given for all available cases. Applications of each technique are outlined for the elucidation of reaction mechanisms. Coverage is comprehensive: normal pulse voltammetry, double differential pulse voltammetry, reverse pulse voltammetry and other triple and multipulse techniques, such as staircase voltammetry, differential staircase voltammetry, differential staircase voltcoulommetry, cyclic voltammetry, square wave voltammetry and square wave voltcoulommetry.
Various metallic or non-metallic surfaces are frequently treated by elewctrochemical methods (e.g. electrodeposition, electroless deposition, anodization, passivation, etc.) in order to achieve a desirable property important for biomedical applications. Applications include orthopedic or dental implants, dressings for wound healing and different skin diseases, surfaces for the prevention of bio-film formation of corrosion inhibition in biological media. The aim of this issue of Modern Aspects of Electrochemistry is to review the latest developments of the surface treatments for biomedical applications in relation to electrochemical science and technology. This new volume of Modern Aspect of Electrochemistry brings to the scientists, engineers and students summarized results and new concepts of surface treatments for the biomedical applications which may have significant influence for the future practical applications.
This new volume of Modern Aspects of Electrochemistry reviews different methods for the production of metal powders including mechanical, chemical and electrochemical powders. Electrochemically produced metal powders are of high purity and they are extremely active during sintering. These powders find a wide-range of applications in automotive, aerospace, energy device and electronics industries.
Medical Applications of Electrochemistry, a volume of the series Modern Aspects of Electrochemistry, illustrates the interdisciplinary nature of modern science by indicating the many current issues in medicine that are susceptible to solution by electrochemical methods. This book also suggests how personalized medicine can develop.
Metal-dielectric interfaces are ubiquitous in modern electronics. As advanced gigascale electronic devices continue to shrink, the stability of these interfaces is becoming an increasingly important issue that has a profound impact on the operational reliability of these devices. In this book, the authors present the basic science underlying the thermal and electrical stability of metal-dielectric interfaces and its relationship to the operation of advanced interconnect systems in gigascale electronics. Interface phenomena, including chemical reactions between metals and dielectrics, metallic-atom diffusion, and ion drift, are discussed based on fundamental physical and chemical principles. Schematic diagrams are provided throughout the book to illustrate interface phenomena and the principles that govern them. Metal-Dielectric Interfaces in Gigascale Electronics provides a unifying approach to the diverse and sometimes contradictory test results that are reported in the literature on metal-dielectric interfaces. The goal is to provide readers with a clear account of the relationship between interface science and its applications in interconnect structures. The material presented here will also be of interest to those engaged in field-effect transistor and memristor device research, as well as university researchers and industrial scientists working in the areas of electronic materials processing, semiconductor manufacturing, memory chips, and IC design.
The expected end of the "oil age" will lead to increasing focus and reliance on alternative energy conversion devices, among which fuel cells have the potential to play an important role. Not only can phosphoric acid and solid oxide fuel cells already efficiently convert today's fossil fuels, including methane, into electricity, but other types of fuel cells, such as polymer electrolyte membrane fuel cells, have the potential to become the cornerstones of a possible future hydrogen economy. Featuring 21 peer-reviewed entries from the Encyclopedia of Sustainability Science and Technology, Fuel Cells offers concise yet comprehensive coverage of the current state of research and identifies key areas for future investigation. Internationally renowned specialists provide authoritative introductions to a wide variety of fuel cell types, and discuss materials, components, and systems for these technologies. The entries also cover sustainability and marketing considerations, including comparisons of fuel cells with alternative technologies.
This volume is meant as an introductory resource aimed at practitioners of electrochemistry research, technology and development mainly at the atomic, molecular or macromolecular levels. Emphasis is placed at length scales in the 1-100 nm range. The aim of the volume is to help provide understanding of electrochemical phenomena and materials at the nanoscale through modeling and numeric simulations. It is also designed to serve as a means to create and use structures.
Forensic DNA profiling procedures are mainly based on high resolution and high throughput capillary electrophoresis separation and detection systems of PCR amplicons obtained from DNA genomic markers with different inheritance patterns. In DNA Electrophoresis Protocols for Forensic Genetics, expert researchers in the field detail many of the protocols and methods which are now commonly used to perform forensic DNA profiling. It includes protocols for profiling of autosomal STRs, Y-STRs, X-STRs, autosomal SNPs, INDELS, Y-SNPs, mtDNA-SNPs, and mtDNA hypervariable regions HV1 and HV2 . Protocols for molecular identification of non-human species and mRNA profiling for body fluid identification are also included. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls.
Capillary electrophoresis (CE) is a powerful and rapid tool for performing complex analyses of a number of different molecular species ranging from small inorganic ions to large nucleic acid fragments and proteins. It is quickly becoming established as a useful tool in clinical medicine due to its consumption of minute samples (less than a microlitre), low reagent costs, and extreme sensitivity, depending upon the source of detection used. Clinical Applications of Capillary Electrophoresis aims to give an in-depth manual of CE applications in several important areas of clinical science. Divided into seven sections, this volume provides a brief overview of how CE has been applied in clinical settings, followed by several chapters on CE analysis of important diagnostic molecules and biofluids, as well as descriptions of applications in clinical chemistry, hematology, bacteriology, virology, disease-associated biomarker discovery, immunology and genetic analysis. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Clinical Applications of Capillary Electrophoresis seeks to serve as a valuable source of information not only for clinical pathologists, but also clinical scientists who wish to apply the technique to diagnosis and research.
Proteins are the functional units of the cellular machinery and they provide significant information regarding the molecular basis of health and disease. Therefore, techniques to separate and isolate the various proteins are critical to studying and understanding their functional characteristics. One of the widely used techniques for this purpose is electrophoresis. In Protein Electrophoresis: Methods and Protocols, contributions from experts in the field have been collected in order to provide practical guidelines to this complex study. Each chapter outlines a specific electrophoretic variant in detail so that laboratory scientists may perform a technique new to their lab without difficulty. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Protein Electrophoresis: Methods and Protocols seeks to serve laboratory scientists with well-honed, detailed methodologies in an effort to further our knowledge of this essential field. |
You may like...
Scientific Basis for Nuclear Waste…
Neil Hyatt, Kevin M. Fox, …
Hardcover
R1,993
Discovery Miles 19 930
Gifts for the Gods - Ancient Egyptian…
Lidija M. Mcknight, Stephanie Atherton-Woolham
Paperback
R882
Discovery Miles 8 820
|