![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry > Electrochemistry & magnetochemistry
The IEEE Press is pleased to reissue this essential book for understanding the basis of modern magnetic materials. Diamagnetism, paramagnetism, ferromagnetism, ferrimagnetism, and antiferromagnetism are covered in an integrated manner -- unifying subject matter from physics, chemistry, metallurgy, and engineering. Magnetic phenomena are discussed both from an experimental and theoretical point of view. The underlying physical principles are presented first, followed by macroscopic or microscopic theories. Although quantum mechanical theories are given, a phenomenological approach is emphasized. More than half the book is devoted to a discussion of strongly coupled dipole systems, where the molecular field theory is emphasized. "The Physical Principles of Magnetism" is a classic "must read" for anyone working in the magnetics, electromagnetics, computing, and communications fields.
This book is a toolbox for identifying and addressing tribocorrosion situations from an engineering point of view. It is an accessible and introductory guideline to the emerging and interdisciplinary field of tribocorrosion covering the main concepts of tribology and corrosion. It describes specific tribocorrosion concepts, models and experimental techniques as well as their application to practical situations in which mechanical and chemical phenomena act simultaneously.
The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. This is the only series of volumes available that presents the cutting edge of research in chemical physics. Includes contributions from experts in this field of research. Contains a representative cross-section of research that questions established thinking on chemical solutions Structured with an editorial framework that makes the book an excellent supplement to an advanced graduate class in physical chemistry or chemical physics
Based on a university course, this book provides an exposition of a large spectrum of geological, geochemical and geophysical problems that are amenable to thermodynamic analysis. It also includes selected problems in planetary sciences, relationships between thermodynamics and microscopic properties, particle size effects, methods of approximation of thermodynamic properties of minerals, and some kinetic ramifications of entropy production. The textbook will enable graduate students and researchers alike to develop an appreciation of the fundamental principles of thermodynamics, and their wide ranging applications to natural processes and systems.
This monograph covers the most relevant applications of chemometrics in electrochemistry with special emphasis on electroanalytical chemistry. It reviews the use of chemometric methods for exploratory data analysis, experimental design and optimization, calibration, model identification, and experts systems. The book also provides a brief introduction to the fundamentals of the main chemometric methods and offers examples of data treatment for calibration and model identification. Due to the comprehensive coverage, this book offers an invaluable resource for graduate and postgraduate students, as well as for researchers in academic and industrial laboratories working in the area of electroanalysis and electrochemical sensors.
This book provides a much-needed, up-to-date overview of unary, binary and ternary bismuth-ferrite-based systems, with a focus on their properties, synthesis methods and applications as electrochemical supercapacitors. It introduces readers to the basic structure and properties of ferrites in general, focusing on the selection criteria for ferrite materials for electrochemical energy storage applications. Along with coverage of ferrite synthesis methods, it discusses bismuth-ferrite structures in unary, binary and mixed ferrite nanostructure systems, as well as future perspectives and limitations for using ferrites as electrochemical supercapacitors. A valuable resource for beginners and advanced researchers working on similar topics, this book enables them to understand the core materials and electrochemical concepts behind bismuth-ferrite-based systems as energy storage materials.
This book highlights the use of one-dimensional transition metal oxides and their analogue nanomaterials for battery applications. The respective chapters present examples of one-dimensional nanomaterials with different architectures, as well as a wide range of applications, e.g. as electrode materials for batteries. The book also addresses various means of synthesizing one-dimensional nanomaterials, e.g. electrospinning, the Kirkendall effect, Ostwald ripening, heterogeneous contraction, liquid-phase preparation, the vapor deposition approach and template-assisted synthesis. In closing, the structural design, optimization and promotion of one-dimensional transition metal oxide electrode materials are discussed. The book chiefly focuses on emerging configurable designs, including core-shell architectures, hollow architectures and other intricate architectures. In turn, the applications covered reflect essential recent advances in many modern types of battery. Accordingly, the book offers an informative and appealing resource for a wide readership in various fields of chemical science, materials and engineering.
Because of their simple preparation and low expense, carbon pastes and carbon paste electrodes are widely used in a myriad of instrumental measurements. With an emphasis on practical applications, Electroanalysis with Carbon Paste Electrodes provides a comprehensive overview of carbon paste electrodes. The text offers a comprehensive and unprecedentedly wide insight into the realm of the carbon paste material, culminating with a systematic presentation of all the methods and procedures applicable to the determination of a myriad of inorganic and organic substances when employing the individual types and variants of carbon paste-based electrodes, sensors, and detectors. With a lengthy list of up-to-date references, this handy reference source includes many typical as well as specific experimental data, serving as a practical guide for daily laboratory work. More specifically, this monograph, the first of its kind, contains: All types of carbon pastes in contemporary classification ,with particular emphasis on chemically and biologically modified configurations, or newly propagated mixtures made of alternate components Details on the preparation of carbon pastes, with a number of practical hints and recommendations, including some hitherto unreported approaches Practical guidance for experimental laboratory work on the preparation and characterization of carbon pastes, including guides on the testing of newly made mixtures Individual methods and procedures for the determination of hundreds of various substances in a complete survey of applications Nearly 3300 original references presented as full-text citations
This book discusses the roles of nanostructures and nanomaterials in the development of battery materials for state-of-the-art electrochemical energy storage systems, and provides detailed insights into the fundamentals of why batteries need nanostructures and nanomaterials. It explores the advantages offered by nanostructure electrode materials, the challenges of using nanostructured materials in batteries, as well as the rational design of nanostructures and nanomaterials to achieve optimal battery performance. Further, it closely examines the latest advances in the application of nanostructures and nanomaterials for future rechargeable batteries, including high-energy and high-power lithium ion batteries, lithium metal batteries (Li-O2, Li-S, Li-Se, etc.), all-solid-state batteries, and other metal batteries (Na, Mg, Al, etc.). It is a valuable reference resource for readers interested in or involved in research on energy storage, energy materials, electrochemistry and nanotechnology.
Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.
This book surveys state-of-the-art research on and developments in lithium-ion batteries for hybrid and electric vehicles. It summarizes their features in terms of performance, cost, service life, management, charging facilities, and safety. Vehicle electrification is now commonly accepted as a means of reducing fossil-fuels consumption and air pollution. At present, every electric vehicle on the road is powered by a lithium-ion battery. Currently, batteries based on lithium-ion technology are ranked first in terms of performance, reliability and safety. Though other systems, e.g., metal-air, lithium-sulphur, solid state, and aluminium-ion, are now being investigated, the lithium-ion system is likely to dominate for at least the next decade - which is why several manufacturers, e.g., Toyota, Nissan and Tesla, are chiefly focusing on this technology. Providing comprehensive information on lithium-ion batteries, the book includes contributions by the world's leading experts on Li-ion batteries and vehicles.
This book discusses the merging of nanoscale electronics and electrochemistry and how this can potentially modernize the way electronic devices are currently engineered or constructed. It introduces the electrochemical capacitance as a fundamental missing concept that solves the puzzle between molecular electronics and electrochemistry at the nanoscale. The electrochemical capacitance, as a fundamental principle, is deduced from first principles quantum mechanics. The text also confirmed that faradaic and non-faradaic processes are only different physical approximations of the same sort of energetic phenomenon.The book comprises three chapters. Chapter one introduces the concepts of chemical capacitance, relaxation resistance, and the quantum resistive-capacitive circuit and demonstrates how these elements are translated to the electrochemistry context. In chapter two, the chemical capacitance, the fundamental concept and missing part of the puzzle that unity electronics and electrochemistry, is deduced from first principles of quantum mechanics. In chapter three, the concepts are practically used in different contexts that include molecular diagnostics, molecular conductance and super-capacitive phenomena is explained using the introduced basic principles.
This book reviews the latest advances in the bioelectrochemical degradation of recalcitrant environmental contaminants. The first part introduces readers to the basic principles and methodologies of bioelectrochemical systems, electron-respiring microorganisms, the electron transfer mechanism and functional electrode materials. In turn, the second part addresses the bioelectrochemical remediation/treatment of various environmental pollutants (including highly toxic refractory organics, heavy metals, and nitrates) in wastewater, sediment and wetlands. Reactor configuration optimization, hybrid technology amplification and enhanced removal principles and techniques are also discussed. The book offers a valuable resource for all researchers and professionals working in environmental science and engineering, bioelectrochemistry, environmental microbiology and biotechnology.
Electrogenerated chemiluminescence (ECL) is a powerful and versatile analytical technique, which is widely applied for biosensing and successfully commercialized in the healthcare diagnostic market. After introducing the fundamental concepts, this book will highlight the recent analytical applications with a special focus on immunoassays, genotoxicity, imaging, DNA and enzymatic assays. The topic is clearly at the frontier between several scientific domains involving analytical chemistry, electrochemistry, photochemistry, materials science, nanoscience and biology. This book is ideal for graduate students, academics and researchers in industry looking for a comprehensive guide to the different aspects of electrogenerated chemiluminescence.
This book offers a survey of the historic development of selected areas of chemistry and chemical physics, discussing in detail the European, American and Russian approaches to the development of chemistry. Other key topics include the kinetics and non-linear thermodynamics of chemical reactions and mathematical modeling, which have found new applications in the theory of dynamical systems. The first observations of the periodicity of chemical reactions were lost in the mist of time. In the second half of the 19th century, the phenomenon of chemical periodicity was studied in relation to electrochemistry, solutions and colloids. Discovered in the late 19th century, Liesegang rings are still enigmatic and remain attractive for researchers. However, the discovery of the Belousov-Zhabotinsky reaction marked the successful culmination of the efforts to find a true chemical oscillatory reaction. The book investigates chemical phenomena that were neglected in the past, but have been rediscovered, placing them into a new conceptual framework. For example, it notes that William Bray, who discovered the first oscillatory homogeneous reaction in 1921, was influenced by the first bio-mathematicians who predicted chemical oscillations in homogeneous systems.
This book reviews the structure and composition of Prussian Blue materials. It presents the state-of-the-art of their application to metal-ion batteries, highlighting the benefits derived from the integration of electrochemical energy storage with clean energies. It concludes with future perspectives including prototyping and large-scale production.
This book focuses on nanocarbons (carbon nanotubes, graphene, nanoporous carbon, and carbon black) and related materials for energy conversion, including fuel cells (predominately proton exchange membrane fuel cells [PEMFC]), Li-ion batteries, and supercapacitors. Written by a group of internationally recognized researchers, it offers an in-depth review of the structure, properties, and functions of nanocarbons, and summarizes recent advances in the design, fabrication and characterization of nanocarbon-based catalysts for energy applications. As such, it is an invaluable resource for graduate students, academics and industrial scientists interested in the areas of nanocarbons, energy materials for fuel cells, batteries and supercapacitors as well as materials design, and supramolecular science.
This volume discusses the theoretical fundamentals and potential applications of the original electro-Fenton (EF) process and its most innovative and promising versions, all of which are classified as electrochemical advanced oxidation processes. It consists of 15 chapters that review the latest advances and trends, material selection, reaction and reactor modeling and EF scale-up. It particularly focuses on the applications of EF process in the treatment of toxic and persistent organic pollutants in water and soil, showing highly efficient removal for both lab-scale and pre-pilot setups. Indeed, the EF technology is now mature enough to be brought to market, and this collection of contributions from leading experts in the field constitutes a timely milestone for scientists and engineers.
This book highlights the development of novel metal-supported solid oxide fuel cells (MS-SOFCs). It describes the metal-supported solid oxide fuel cells (MS-SOFCs) that consist of a microporous stainless steel support, nanoporous electrode composites and a thin ceramic electrolyte using the "tape casting-sintering-infiltrating" method. Further, it investigates the reaction kinetics of the fuel cells' electrodes, structure-performance relationship and degradation mechanism. By optimizing the electrode materials, preparation process for the fuel cells, and nano-micro structure of the electrode, the resulting MS-SOFCs demonstrated (1) great output power densities at low temperatures, e.g., 1.02 W cm-2 at 600 DegreesC, when operating in humidified hydrogen fuels and air oxidants; (2) excellent long-term stability, e.g., a degradation rate of 1.3% kh-1 when measured at 650 DegreesC and 0.9 A cm-2 for 1500 h. The design presented offers a promising pathway for the development of low-cost, high power-density and long-term-stable SOFCs for energy conversion.
This book provides a review of the latest advances in anion exchange membrane fuel cells. Starting with an introduction to the field, it then examines the chemistry and catalysis involved in this energy technology. It also includes an introduction to the mathematical modelling of these fuel cells before discussing the system design and performance of real-world systems. Anion exchange membrane fuel cells are an emerging energy technology that has the potential to overcome many of the obstacles of proton exchange membrane fuel cells in terms of the cost, stability, and durability of materials. The book is an essential reference resource for professionals, researchers, and policymakers around the globe working in academia, industry, and government.
Global experts provide an authoritative source of information on the use of electrochemical fuel cells, and in particular discuss the use of nanomaterials to enhance the performance of existing energy systems. The book covers the state of the art in the design, preparation, and engineering of nanoscale functional materials as effective catalysts for fuel cell chemistry, highlights recent progress in electrocatalysis at both fuel cell anode and cathode, and details perspectives and challenges in future research.
The renowned Oxford Chemistry Primers series, which provides focused introductions to a range of important topics in chemistry, has been refreshed and updated to suit the needs of today's students, lecturers, and postgraduate researchers. The rigorous, yet accessible, treatment of each subject area is ideal for those wanting a primer in a given topic to prepare them for more advanced study or research. Moreover, cutting-edge examples and applications throughout the texts show the relevance of the chemistry being described to current research and industry. The learning features provided, including questions at the end of every chapter and online multiple-choice questions, encourage active learning and promote understanding. Furthermore, frequent diagrams, margin notes, further reading, and glossary definitions all help to enhance a student's understanding of these essential areas of chemistry. This brand new addition to the series provides the most accessible first introduction to electrochemistry, combining explanation of the fundamental concepts with practical examples of how they are applied in a range of real-world situations. Online resources The online resources that accompany Electrochemistry include: For students: - Multiple-choice questions for self-directed learning - Online tutorials to explain difficult concepts For registered adopters of the text: - Figures from the book available to download
The brief gives a comprehensive overview of the polysaccharide applications in the field of battery materials. Included is a historic overview as well as recent developments in the field including new battery types and chemistries. Written in an accessible style by academics, it is aimed at those new to the field as well as individuals who have interest in novel polysaccharide applications. Aimed at advanced undergraduates, academic and industrial researchers and professionals studying or using biobased polymers.
This brief reviews the fundamentals, recent developments, challenges and prospects of Li-S and Li-O2 batteries, including fundamental research and potential applications. It starts with a brief overview encompassing the current state of Li-S and Li-O2 battery technology. It then provides general information on Li-S and Li-O2 batteries, including the electrochemical processes and battery components. The following sections focus on the historical and recent development of Li-S and Li-O2 batteries respectively, offering detailed insights into the key material development, cell assembly, diagnostic test and mechanism of electrolyte decomposition. Lastly, it focuses on the main promising applications of Li-S and Li-O2 batteries together with their challenges and potential
This book describes various carbon nanomaterials and their unique properties, and offers a detailed introduction to graphene-carbon nanotube (CNT) hybrids. It demonstrates strategies for the hybridization of CNTs with graphene, which fully utilize the synergistic effect between graphene and CNTs. It also presents a wide range of applications of graphene-CNT hybrids as novel materials for energy storage and environmental remediation. Further, it discusses the preparation, structures and properties of graphene-CNT hybrids, providing interesting examples of three types of graphene-CNT hybrids with different nanostructures. This book is of interest to a wide readership in various fields of materials science and engineering. |
![]() ![]() You may like...
The Classic USDA Farmers' Bulletin…
U.S. Department of Agriculture
Hardcover
R815
Discovery Miles 8 150
Behavioral Finance - Psychology…
Richard Deaves, Lucy Ackert
Hardcover
Cooperative Economic Insect Report, Vol…
United States Department of Agriculture
Paperback
R391
Discovery Miles 3 910
|