![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry > Electrochemistry & magnetochemistry
Integrating both theoretical and applied aspects of electrochemistry, this acclaimed monograph series presents a review of the latest advances in the field. The current volume covers ion and electron transfer across monolayers of organic surfactants, determination of current distributions governed by Laplace's equation, and three other subjects.
This volume documents the scientific events of the NATO Advanced Research Workshop (ARW) on The Preparation of Nanoparticles in Solutions and in Solids. The ARW was held in the second largest city in Hungary, Szeged, truthfully referred to as "the city of sunshine," from March 8 to March 13, 1996. The seventy-seven participants, including seventeen students, came from twentyone different countries. Housing all participants together and arranging a number of social activities fostered lively discussions both inside and outside of formal sessions. Twenty-one key lectures were presented in five sessions. Each session was followed by a fortyfive minutes of general discussion. One evening was devoted to the presentation of fifty-five posters. Thirty-two contribution were submitted and accepted for publication in the present volume. The volume also contains the minutes of the discussions, and a summary of the conclusions of the working groups. The ARW was organized under the auspices and financial support of NATO, City of Szeged, European Research Office of the US Army, Hungarian Academy of Sciences, Hungarian National Committee for Technological Development (OMBF), International Association of Colloid and Interface Scientists IACIS, and National Science Foundation (NSF). Both the organizers and participants gratefully acknowledge the generous support of the agencies. The Editors also thank the high quality and creative contributions of the participants. It is they who made this volume a reality. Janos H. fendler Irnre Dekany ix Glossary of Some Names and Acronyms Advanced Materials Man-made materials having superior mechanical, thennal, electrical, optical, and other desirable properties.
'A comprehensive review of the current state of the theoretical development in this important area of potential application of conducting polymers, and is very timely...The editor-author is to be congratulated for his marathon efforts and the production of a significant contribution to the literature.' -TRIP This three-part series provides undergraduate and graduate students in electrochemistry and materials science with a broad understanding of electroactive polymers. In Part I, renowned scientists examine the fundamental principles underlying electrochemical behavior of electroactive polymer materials. Contributors focus on the fundamentals of charge percolation and conductivity behavior associated with the membrane properties of electroactive polymer films. Part I also includes coverage of the phenomenon of heterogeneous redox catalysis at electroactive polymer modified electrodes.
This volume in the acclaimed series Modern Aspects of Electrochemistry starts with a dedication to the late Professor Brian Conway who for 50 years helped to guide this series to its current prominence. The remainder of the volume is then devoted to the following topics: PEM fuel cells; the use of graphs in electrochemical reaction newtworks; nanomaterials in Lithium-ion batteries; direct methanolf fuel cells (two chapters); fuel cell catalyst layers. The book is for electrochemists, electrochemical engineers, fuel cell workers and energy generation workers.
This volume analyzes and summarizes recent developments in several key interfacial electrochemical systems in the areas of fuel cell electrocatatalysis, electrosynthesis and electrodeposition. The six Chapters are written by internationally recognized experts in these areas and address both fundamental and practical aspects of several existing or emerging key electrochemical technologies. The Chapter by R. Adzic, N. Marinkovic and M. Vukmirovic provides a lucid and authoritative treatment of the electrochemistry and electrocatalysis of Ruthenium, a key element for the devel- ment of efficient electrodes for polymer electrolyte (PEM) fuel cells. Starting from fundamental surface science studies and interfacial considerations, this up-to-date review by some of the pioneers in this field, provides a deep insight in the complex catalytic-electrocatalytic phenomena occurring at the interfaces of PEM fuel cell electrodes and a comprehensive treatment of recent developments in this extremely important field. Several recent breakthroughs in the design of solid oxide fuel cell (SOFC) anodes and cathodes are described in the Chapter of H. Uchida and M. Watanabe. The authors, who have pioneered several of these developments, provide a lucid presentation d- cribing how careful fundamental investigations of interfacial electrocatalytic anode and cathode phenomena lead to novel electrode compositions and microstructures and to significant practical advances of SOFC anode and cathode stability and enhanced electrocatalysis.
The concept to utilize an ion-conducting polymer membrane as a solid po- mer electrolyte offers several advantages regarding the design and operation of an electrochemical cell, as outlined in Volume 215, Chapter 1 (L. Gubler, G.G. Scherer). Essentially, the solvent and/or transport medium, e.g., H O, 2 + for the mobile ionic species, e.g., H for a cation exchange membrane, is taken up by and con?ned into the nano-dimensional morphology of the i- containingdomainsofthepolymer.Asaconsequence, aphaseseparationinto a hydrophilic ion-containing solvent phase and a hydrophobic polymer ba- bone phase establishes. Because of the narrow solid electrolyte gap in these cells, low ohmic losses reducing the overall cell voltage can be achieved, even at highcurrent densities. This concept was applied to fuel cell technology at a very early stage; h- ever, performance and reliability of the cells were low due to the dissatisfying membrane properties at that time. The development of per?uoro sulfonate and carboxylate-type membranes, in particular for the chlor-alkali process, directly fostered the further development of proton-conducting membranes and, as a consequence, also the progress in this type of fuel cell technology (polymer electrolyte fuel cell, PEFC)
Volume 41 of the prominent series Modern Aspects of Electrochemistry covers a range of topics in Electrochemistry and Electrochemical Engineering. The topics include the second chapter on the survey of experimental techniques and devices of solid state electrochemistry begun by Professor Joachim Maier in Volume 39. Chapter two contains a review of synthesis and characterization of nanoporous carbons and their electrochemical applications. The next chapter reviews and discusses the use of graphs in the study of chemical reaction network. The book also reviews and discusses mathematical models of three dimensional electrode structures.
Square-wave voltammetry is a technique readily available to every researcher, scientist, engineer and practitioner applying modern electrochemical measurement systems. It is of beneficial use in analytical applications and in fundamental studies of electrode mechanisms. But the optimised exploitation of this technique is only possible for those with a detailed knowledge of signal generation and of the thermodynamics and kinetics involved. This volume, written by three distinguished experts, systematically delivers the complete and in-depth information that enables both researchers and users of square-wave voltammetry to apply this technique effectively. Square-Wave Voltammetry also offers an appendix on mathematical modeling and a chapter on the most important electrode mechanisms which briefly reviews the underlying theory and numerical formulae intrinsic for simulating experiments with popular software tools, e.g. Mathcad (R).
The concept to utilize an ion-conducting polymer membrane as a solid po- mer electrolyte offers several advantages regarding the design and operation of an electrochemical cell, as outlined in Volume 215, Chapter 1 (L. Gubler, G.G. Scherer). Essentially, the solvent and/or transport medium, e.g., H O, 2 + for the mobile ionic species, e.g., H for a cation exchange membrane, is taken up by and con?ned into the nano-dimensional morphology of the i- containingdomainsofthepolymer.Asaconsequence, aphaseseparationinto a hydrophilic ion-containing solvent phase and a hydrophobic polymer ba- bone phase establishes. Because of the narrow solid electrolyte gap in these cells, low ohmic losses reducing the overall cell voltage can be achieved, even at highcurrent densities. This concept was applied to fuel cell technology at a very early stage; h- ever, performance and reliability of the cells were low due to the dissatisfying membrane properties at that time. The development of per?uoro sulfonate and carboxylate-type membranes, in particular for the chlor-alkali process, directly fostered the further development of proton-conducting membranes and, as a consequence, also the progress in this type of fuel cell technology (polymer electrolyte fuel cell,PEFC).
Progress in the development of oxygen ion and mixed conductors is responsible for innovations in the fields of gas sensors, fuel cells, oxygen permeation membranes, oxygen pumps and electrolyzers. Commercialization has been impeded by materials stability and compatibility issues, high costs of fabrication and inadequate understanding of the interfacial phenomena controlling the operation of these devices. In this text we assemble a unique group of experts whose articles straddle, for the first time, all the key topical areas ranging from fundamentals relating to (a) defects, electrochemical, and interfacial processes, (b) catalysis, electrocatalysis and gas reforming, to design and fabrication including (c) advanced electroceramic processing methods, (d) materials selection and optimization, (e) and applications including scale up, commercialization and competitive technologies. This material was first presented at a NATO Advanced Study Institute held in Erice, Sicily, Italy during the period july 15-30, 1997. All the participants benefited from the integrated and synthetic approach taken to the subject matter with liberal use of examples and case studies. Many opportunities were made available for critical discussions of the key concepts and issues both within the formal sessions as well as in the cafes and restaurants which populate Erice. I join the co-organizers of the Advanced Study Institute, Professors J. Schoonman, I. Riess and M. Balkanski, in thanking NATO for providing support for the ASI. Thanks are also due to Dr.
Given the backdrop of intense interest and widespread discussion on the prospects of a hydrogen energy economy, this book aims to provide an authoritative and up-to-date scientific account of hydrogen generation using solar energy and renewable sources such as water. While the technological and economic aspects of solar hydrogen generation are evolving, the scientific principles underlying various solar-assisted water splitting schemes already have a firm footing. This book aims to expose a broad-based audience to these principles. This book spans the disciplines of solar energy conversion, electrochemistry, photochemistry, photoelectrochemistry, materials chemistry, device physics/engineering, and biology.
The current volume covers a host of topics in organic synthesis, photo- / radiation-chemistry, electron donor-acceptor interaction, supramolecular chemistry and photovoltaics. It provides a unique forum for expounding and discussing the latest developments in these important disciplines of "Fullerene Research." The selected examples, described in this comprehensive and one-of-a-kind resource, will illustrate the continuing interest and potential of fullerenes as multifunctional moieties in well-ordered multicomponent composites. In view of the novelty and the various areas involved, the composed monographs are of interest for condensed matter physicists; materials scientists; electrochemists; biochemists; solid-state, physical, organic, inorganic, and theoretical chemists; chemical, electrical, and optical engineers; and upper-level undergraduate and graduate students in these disciplines.
The Li-ion battery market is growing fast due to its ever increasing number of applications, from electric vehicles to portable devices. These devices are in demand due to safety reasons, energy efficiency, high power density and long life duration, which drive the need for more efficient electrochemical energy storage systems. The aim of this book is to provide the challenges and perspectives for Li-ion batteries (chapters 1 and 2), at the negative electrode as well as at the positive electrode, and for technologies beyond the Li-ion with the emerging Na-ion batteries and multivalent (Mg, Al, Ca, etc) systems (chapters 4 and 5). The aim is also to alert on the necessity to develop the recycling methods of the millions of produced batteries which are going to further flood our societies (chapter 3), and also to continuously increase the safety of the energy storage systems. For the latter challenge, it is interesting to seriously consider polymer electrolytes and batteries as an alternative (chapter 6).This book will take readers inside recent breakthroughs made in the electrochemical energy systems. It is a collaborative work of experts from the most known teams in the batteries field in Europe and beyond, from academics as well as from manufacturers.
Safety is one of the most important issues today. Recent international standards such as ISO and IEC have consistently advocated goal-based procedures of designing systems for better safety. The procedure assumes safety goals are explicitly established by international organizations, individual nations, particular industries or private companies. Satisfying Safety Goals by Modern Reliability Engineering is a methodological approach to the goal-based safety design procedure that will soon be an international requirement. Satisfying Safety Goals by Modern Reliability Engineering primarily focuses on the quantitative aspects of international standards. The methodologies presented are illustrated through the use of case studies. The book also:
Satisfying Safety Goals by Modern Reliability Engineering will be a good reference for senior undergraduates, postgraduates and researchers in the fields of reliability engineering and safety engineering and risk assessment. It will also be of interest to reliability engineers, practitioners in industry and regulatory authorities.
Closing the gap between electrochemical engineering science and electrochemical technology, this volume is for all electrochemists and electrochemical engineers, metallurgists, engineers in chemical process, galvanic, metallurgical and electric power industries.
To the eyes of a chemist, carbon is certainly one of the most fascinating elements of the periodic table. Basically, the electronic structure and atomic size of carbon enables this element to form a variety of bonds with other elements and, most importantly, with other carbon atoms as weIl. These unique features lead to the amazingly complicated molecular structures we encounter e. g. in life sciences and organic chemistry. Of course, the technical importance of carbon is enormou- but I don't want to carry too many coals to Newcastle. Prom the viewpoint of an astrophysicist or chemist, the significance of carbon lies in the fact that it is the most abundant condensable element in space. Born in the interior of stars, and from there expelled into the interstellar medium, it initiates the formation of simple and complex molecules and of nanoscopic grains. These in turn form huge clouds in space - the birthplace of new stars and planetary systems. The decisive role of carbon in interstellar chemistry is widely accepted and the search for more and more families of interstellar carbon-bearing molecules is a topic of ongoing research. The interdisciplinary aspect of carbon also concerns its various solid forms, in which C and the other closed-cage fullerenes are certainly some of the most popular 60 newcomers.
Energy Harvesting Technologies provides a cohesive overview of the fundamentals and current developments in the field of energy harvesting. In a well-organized structure, this volume discusses basic principles for the design and fabrication of bulk and MEMS based vibration energy systems, theory and design rules required for fabrication of efficient electronics, in addition to recent findings in thermoelectric energy harvesting systems. Combining leading research from both academia and industry onto a single platform, Energy Harvesting Technologies serves as an important reference for researchers and engineers involved with power sources, sensor networks and smart materials.
This book describes the field of State-of-Charge (SoC) indication for rechargeable batteries. An overview of the state-of-the-art of SoC indication methods including available market solutions from leading semiconductor companies is provided. All disciplines are covered, from electrical, chemical, mathematical and measurement engineering to understanding battery behavior. This book will therefore is for persons in engineering and involved in battery management.
Biosensors offer clear and distinct advantages over standard analytical methods for the direct monitoring of environmental pollutants in the field, such as real-time detection with minimum sample preparation and handling. The present book highlights recent advantages that will be of great value to a range of scientists, researchers and students dealing with analytical and environmental chemistry and biosensor technology. It presents recent trends in analytical methodology for the determination of indoor and outdoor pollutants, advances in DNA, biological and recognition-based sensors, examples of biosensors for use in field and water analysis, biosensors based on non-aqueous systems, and recent advances in the miniaturisation and micromachining of biosensors.
This book covers a significant number of R&D projects, performed mostly after 2000, devoted to the understanding and prevention of performance degradation processes in polymer electrolyte fuel cells (PEFCs). The extent and severity of performance degradation processes in PEFCs were recognized rather gradually. Indeed, the recognition overlapped with a significant number of industrial dem- strations of fuel cell powered vehicles, which would suggest a degree of technology maturity beyond the resaolution of fundamental failure mechanisms. An intriguing question, therefore, is why has there been this apparent delay in addressing fun- mental performance stability requirements. The apparent answer is that testing of the power system under fully realistic operation conditions was one prerequisite for revealing the nature and extent of some key modes of PEFC stack failure. Such modes of failure were not exposed to a similar degree, or not at all, in earlier tests of PEFC stacks which were not performed under fully relevant conditions, parti- larly such tests which did not include multiple on-off and/or high power-low power cycles typical for transportation and mobile power applications of PEFCs. Long-term testing of PEFCs reported in the early 1990s by both Los Alamos National Laboratory and Ballard Power was performed under conditions of c- stant cell voltage, typically near the maximum power point of the PEFC.
The Electrochemical Dictionary provides up-to-date, broad and authoritative coverage of the specific terms most used in electrochemistry and its related fields, including relevant areas of physics and engineering. This modern compendium will be an indispensable source of information for scientists, engineers, and technical staff active in all fields of electrochemistry. The more than 2.770 entries have been written by a distinguished panel of eminent electrochemists. Each entry supplies a clear and precise explanation of the term and provides references to the most useful reviews, books and original papers to enable readers to pursue a deeper understanding if so desired. The Electrochemical Dictionary will also be appreciatively consulted by scientists working in adjacent sciences and technologies, who need a quick understanding of the electrochemical terms they encounter. More than 300 figures and illustrations elaborate the textual definitions. The Electrochemical Dictionary also contains biographical entries of people who have substantially contributed to electrochemistry."
Today's commercial, medical and military electronics are becoming smaller and smaller. At the same time these devices demand more power and currently this power requirement is met almost exclusively by battery power. This book includes coverage of ceramic hybrid separators for micro fuel cells and miniature fuel cells built with LTCC technology. It also covers novel fuel cells and discusses the application of fuel cell in microelectronics.
Synchrotron Techniques in Interfacial Chemistry covers the structure of the electrode--solution interface and surface films, theory of X-ray scattering at surfaces and interfaces, synchrotron radiation instrumentation, surface X-ray diffraction, X-ray reflectivity, X-ray absorption spectroscopy (EXAFS and XANES), standing wave techniques, and IR spectroscopy. The use of each technique in the study of electrochemical problems is illustrated.
Molecular Theory of Solvation presents the recent progress in the statistical mechanics of molecular liquids applied to the most intriguing problems in chemistry today, including chemical reactions, conformational stability of biomolecules, ion hydration, and electrode-solution interface. The continuum model of "solvation" has played a dominant role in describing chemical processes in solution during the last century. This book discards and replaces it completely with molecular theory taking proper account of chemical specificity of solvent. The main machinery employed here is the reference-interaction-site-model (RISM) theory, which is combined with other tools in theoretical chemistry and physics: the ab initio and density functional theories in quantum chemistry, the generalized Langevin theory, and the molecular simulation techniques. This book will be of benefit to graduate students and industrial scientists who are struggling to find a better way of accounting and/or predicting "solvation" properties.
This volume of Modern Aspects contains a remarkable spread of topics covered in an authoritative manner by some internationally renowned specialists. In a seminal chapter Drs. Babu, Oldfield and Wieckowski demonstrate eloquently the strength of electrochemical nuclear magnetic resonance (EC-NMR) to study in situ both sides of the electrochemical interface via the simultaneous use of and This powerful non-invasive technique brings new insights to both fundamental and practical key aspects of electrocatalysis, including the design of better anodes for PEM fuel cells. The recent impressive advances in the use of rigorous ab initio quantum chemical calculations in electrochemistry are described in a remarkable chapter by Marc Koper, one of the leading protagonists in this fascinating area. This lucid chapter is addressed to all electrochemists, including those with very little prior exposure to quantum chemistry, and demonstrates the usefulness of ab initio calculations, including density functional theory (DFT) methods, to understand several key aspects of fuel cell electrocatalysis at the molecular level. The most important macroscopic and statistical thermodynamic models developed to describe adsorption phenomena on electrodes are presented critically in a concise and authoritative chapter by Panos Nikitas. The reader is guided through the seminal contributions of Frumkin, Butler, Bockris, Guidelli and others, to the current state of the art adsorption isotherms, which are both rigorous, and in good agreement with experiment. |
![]() ![]() You may like...
Ways of Reading - Advanced Reading…
Martin Montgomery, Alan Durant, …
Hardcover
R4,977
Discovery Miles 49 770
|