![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry > Electrochemistry & magnetochemistry
This book covers the most recent advances in the science and technology of nanostructured materials for lithium-ion application. With contributions from renowned scientists and technologists, the chapters discuss state-of-the-art research on nanostructured anode and cathode materials, some already used in commercial batteries and others still in development. They include nanostructured anode materials based on Si, Ge, Sn, and other metals and metal oxides together with cathode materials of olivine, the hexagonal and spinel crystal structures.
Recognized experts present incisive analysis of both fundamental and applied problems in this continuation of a highly acclaimed series. Topics discussed include: * A review of the literature on the potential-of-zero charge by Trasatti and Lust. * A thorough review and discussion of nonequilibrium fluctuations in corrosion processes. * A wide-ranging discussion of conducting polymers, electrochemistry, and biomimicking processes. * Microwave (photo)electrochemistry, from its origins to today's research opportunities, including its relation to electrochemistry. * New fluorine cell design, from model development through preliminary engineering modeling, laboratory tests, and pilot plant tests. * A comprehensive account of the major and rapidly developing field of the electrochemistry of electronically conducting polymers and their applications. These authoritative studies will be invaluable for researchers in engineering, electrochemistry, analytical chemistry, materials science, physical chemistry, and corrosion science.
The dream of developing a biocomputer should not be dismissed as a sheer fantasy. Although there is naturally some doubt as to whether it is possible to design a computer using carbon-based components as in living organisms, instead of silicon-based components as in existing computers, the fact that an average brain often outperforms the most sophisticated computer in terms of the complexity of tasks, if not in terms of speed, is a living testimony to this possibility. The remaining question is to what extent a biocomputer can mimic a living organism and whether it is possible to design and fabri cate such a biocomputer within the foreseeable future. This volume does not attempt to provide immediate and exact answers to these questions but instead attempts to provide a vision and a progress report of the initial efforts. This volume is mainly a collection of papers presented at the Symposium on Molecular Electronics - Biosensors and Biocomputers, sponsored by the Divi sion of Biotechnology, Health and Environment of the Fine Particle Society, held from July 19-22, 1989 at the Society's 19th Annual Meeting in Santa Clara, California. Also included are articles contributed by those who planned to attend the conference but were unable to do so. The emergence of the field of molecular electronics is largely the consequence of one person's crusade, that of Forrest L. Carter.
Small sealed electrochemical power units have developed remarkably in the last two decades owing to improvements in technology and a greater understanding of the underlying basic sciences. These high-energy-density sealed battery sys tems have made possible the safe and rapid development of lightweight implant able electrical devices, some of which, such as heart pacers, have reached a large market. In most of these devices the battery constitutes the majority of the device volume and weight, and limits the useful life. This book on Batteries for Implantable Biomedical Devices will be highly welcome to those interested in devices for heart pacing, pain suppression, bone repair, bone fusion, heart assist, and diabetes control, as well as numerous other biomedical devices that depend on sealed batteries. However, the material will also be extremely useful to a much broader audience, including those concerned with sealed batteries for such other difficult environments as space, the sea and remote locations."
Recognized experts present incisive analyses of both fundamental and applied problems in this continuation of a highly acclaimed series. Topics in Number 35 include: * Impedance spectroscopy with specific applications to electrode processes involving hydrogen; * Fundamentals and contemporary applications of electroless metal deposition; * The development of computational electrochemistry and its application to electrochemical kinetics; * Analysis of electrolyte solutions at high concentrations; * Applications of the Born theory to solvent polarization by ions and its extensions to treatment of kinetics of ionic reactions. GBP/LISTGBP
The author provides a unified account of the electrochemical material science of metal chalcogenide (MCh) compounds and alloys with regard to their synthesis, processing and applications. Starting with the chemical fundamentals of the chalcogens and their major compounds, the initial part of the book includes a systematic description of the MCh solids on the basis of the Periodic Table in terms of their structures and key properties. This is followed by a general discussion on the electrochemistry of chalcogen species, and the principles underlying the electrochemical formation of inorganic compounds/alloys. The core of the book offers an insight into available experimental results and inferences regarding the electrochemical preparation and microstructural control of conventional and novel MCh structures. It also aims to survey their photoelectrochemistry, both from a material-oriented point of view and as connected to specific processes such as photocatalysis and solar energy conversion. Finally, the book illustrates the relevance of MCh materials to various applications of electrochemical interest such as (electro)catalysis in fuel cells, energy storage with intercalation electrodes, and ion sensing.
In the decade since the introduction of the first commercial lithium-ion battery research and development on virtually every aspect of the chemistry and engineering of these systems has proceeded at unprecedented levels. This book is a snapshot of the state-of-the-art and where the work is going in the near future. The book is intended not only for researchers, but also for engineers and users of lithium-ion batteries which are found in virtually every type of portable electronic product.
Experiments showinga rapid and reversible change ofcolor s eem likemagic and are always fascinating. The process involved, photochromism, has a few real and many potential applications. Photochromic glasses thatdarken int he s unlight (protecting eyes from excessive light intensity) and bleach ind im lighta re today a part ofe v eryday life. Organic photochromic compounds in plastic ophthalmic lenses, more comfortable to wear, are now competing with silversalts in glasses, despite the longer lifetime oft he inorganic system. This successful commercial application has given a new impetus to research in the general field of photo chromism, which had its most recent revival in the early eighties. The storyo forganic photochromism with its ups anddowns, from the breakthroughs oft he pioneering periodi n the fifties, through the hardtimes dueto the drawbacks of photodegradation, tot he recent successes is in many ways a saga. The upsurges in this domain were marked by an increasing flow of articles in scientific journals andt he publication of several books (in 1971, 1990, and 1992) that have collectedt he important accumulatedknowledge. Over this period, a considerable number ofpatents have been issued. International meetings have accompanied this activity, the most recent being held in 1993 (ISOP 93 atLes Embiez Island, France) and in 1996 (ISOP 96 inClearwater, Florida). Remark ably, these meetings had good representation from both academia and industry. The next ISOP is planned for 1999 in Fukuoka, Japan.
The first model for the distribution of ions near the surface of a metal electrode was devised by Helmholtz in 1874. He envisaged two parallel sheets of charges of opposite sign located one on the metal surface and the other on the solution side, a few nanometers away, exactly as in the case of a parallel plate capacitor. The rigidity of such a model was allowed for by Gouy and Chapman inde pendently, by considering that ions in solution are subject to thermal motion so that their distribution from the metal surface turns out diffuse. Stern recognized that ions in solution do not behave as point charges as in the Gouy-Chapman treatment, and let the center of the ion charges reside at some distance from the metal surface while the distribution was still governed by the Gouy-Chapman view. Finally, in 1947, D. C. Grahame transferred the knowledge of the struc ture of electrolyte solutions into the model of a metal/solution interface, by en visaging different planes of closest approach to the electrode surface depending on whether an ion is solvated or interacts directly with the solid wall. Thus, the Gouy-Chapman-Stern-Grahame model of the so-called electrical double layer was born, a model that is still qualitatively accepted, although theoreti cians have introduced a number of new parameters of which people were not aware 50 years ago.
This volume contains five chapters covering four topics of current research interest: splitting of water, lithium batteries, intercalation, and fundamental aspects of electrode processes. Two chapters are devoted to splitting of water. The first chapter, by Gutmann and Murphy, presents a comprehensive review of the classical methods of splitting water by electrolysis and also presents some novel techniques for splitting water. Chapter 2, by Gratzel, surveys the current research being done on water splitting using visible light. Two chapters are included that deal with the timely topics of lithium batteries and intercalation. The first, Chapter 3 by Marincic, presents a practical guide to the recent development of lithium batteries, while the second, Chapter 4 by McKinnon and Haering, presents and discusses various theoretical approaches to inter calation. The last chapter in the book, Chapter 5 by Khan, presents a survey of many of the fundamental concepts and misconceptions of electrode kinetics as applied to semiconductors in particular."
This volume contains the papers presented at the UNESCO Scientific Forum on Chemistry in the Service of Mankind - Electrochemistry in Research and Development, held in Paris, June 4-6, 1984. Electrochemistry is concerned with the way electricity produces chemical changes and in turn chemical changes result in the production of electricity. This interaction forms the basis for an enormous variety of processes ranging from heavy industry through batteries to biological phenomena. Although there are many established applications, modern research has led to a great expansion in the possibilities for using electrochemistry in exciting future developments. To encourage this progress, UNESCO has set up an Expert Committee on Electrochemistry and its Applications in the European and North American region, which has already held a number of meetings devoted to specific topics. To achieve a synthesis of the main directions of development and to demonstrate the importance of these for the needs of our modern society, the Expert Committee organized a Forum on Electrochemistry in Research and Development. The object of this was to assess the future trends in research and development and to establish a dialogue between experts in electrochemistry and their colleagues in the many other disciplines which can make use of electrochemistry. The Forum was also intended to present electrochemistry and its applications in a form accessible to non-specialists so that science policy-makers will be aware of the potentialities of this subject for the future needs of mankind.
The intention of this monograph has been to assimilate key practical and theoretical aspects of those spectroelectrochemical techniques likely to become routine aids to electrochemical research and analysis. Many new methods for interphasial studies have been and are being developed. Accordingly, this book is restricted in scope primarily to in situ methods for studying metal! electrolyte or semiconductor! electrolyte systems; moreover, it is far from inclusive of the spectroelectrochemical techniques that have been devised. However, it is hoped that the practical descriptions provided are sufficiently explicit to encourage and enable the newcomer to establish the experimental facilities needed for a particular problem. The chapters in this text have been written by international authorities in their particular specialties. Each chapter is broadly organized to review the origins and historical background of the field, to provide sufficiently detailed theory for graduate student comprehension, to describe the practical design and experimental methodology, and to detail some representative application examples. Since publication of Volume 9 of the Advances in Electrochemistry and Electrochemical Engineering series (1973), a volume devoted specifically to spectroelectrochemistry, there has been unabated growth of these fields. A number of international symposia-such as those held at Snowmass, Colorado, in 1978, the proceedings of which were published by North-Holland (1980); at Logan, Utah in 1982, published by Elsevier (1983); or at the Fritz Haber Institute in 1986-have served as forums for the discussion of nontraditional methods to study interphases and as means for the dissemination of a diversity of specialist research papers.
Some time ago a group of present and former collaborators of Professor John O'M. Bock ris, following a suggestion by Professor J. D. Mackenzie (Los Angeles), conceived the idea of an International Symposium devoted to reviewing the active and developing aspects of the science of electrochemistry. From this beginning has sprung the "Electrochemistry Symposium-The Past Thirty and the Next Thirty Years," which took place at Imperial College, London, from April 3-6, 1975. The plan for this symposium is unusual, since it features pairs of invited addresses, one to summarize the "state of the art" and the other to suggest directions for future re search in particular aspects of electrochemistry. This volume of proceedings gives these papers in their fmal, considered, and fully referenced form, arranged in the sequence of their delivery at the symposium. Also in cluded are introductory addresses given by Professor Ubbelohde, Professor Frumkin, Dr. Egan, and Dr. Inman. Both aspects of nearly every topic, plus the discussions, are integrated in a Report or Summary. A synopsis of the matters raised at the symposium and prepared by Professor John O'M. Bockris closes this volume. The cooperation of Plenum Press, New York, is gratefully acknowledged.
Electrified interfaces span from metaVsemiconductor and metaVelectrolyte interfaces to disperse systems and biological membranes, and are notably important in so many physical, chemical and biological systems that their study has been tackled by researchers with different scientific backgrounds using different methodological approaches. The various electrified interfaces have several common features. The equilibrium distribution of positive and negative ions in an electrolytic solution is governed by the same Poisson-Boltzmann equation independent of whether the solution comes into contact with a metal, a colloidal particle or a biomembrane, and the same is true for the equilibrium distribution of free electrons and holes of a semiconductor in contact with a different conducting phase. Evaluation of electric potential differences across biomembranes is based on the same identity of electrochemical potentials which holds for a glass electrode and which yields the Nernst equation when applied to a metal/solution interface. The theory of thermally activated electron tunneling, which was developed by Marcus, Levich, Dogonadze and others to account for electron transfer across metaVelectrolyte interfaces, is also applied to light induced charge separation and proton translocation reactions across intercellular membranes. From an experimental viewpoint, the same electrochemical and in situ spectroscopic techniques can equally well be employed for the study of apparently quite different electrified interfaces.
There is no doubt that the field of artificial membrane transport using synthetic ionophores has advanced remarkably in the past 15 years due primarily to the synthesis of new ionophores. Even though the theoretical framework substantially predated this activity, the merging of theory with transport experiment has often been sketchy. The purpose of this outline has been to examine key examples to illustrate the underlying principles and to suggest how experimental variables dominate the results obtained. To a very good approximation the assumption of a "diffusion" regime is often justified, is easily confirmed experimentally and provides a clear framework for exploitation of the inherent selectivity of a given ionophore. Thus for synthetic chemists who wish a "quick and nasty" experiment to examine the question of selectivity, the recipe is clear: a mixture containing all ions of interest in a standard experiment for each ligand of interest using a moderately stirred (100-200 rpm) cell and analysis of the mixture produced on the OUT side of the cell at a fixed, small extent of transport. Together with duplicates and controls, this modest set of experiments will place the results on an unambiguous footing from which clear conclusions about each ionophore's characteristics are readily obtained. For those with more detailed interests in the transport process the demands are correspondingly higher.
This book originated out of the papers presented at the special symposium, "Electrochemistry in Transition-From the 20th to the 21st Century," scheduled by the Division of Colloid and Surface Science during the American Chemical Society meeting in Toronto. The symposium was in honor of Professor J. O'M. Bockris, who received the ACS award on "The Chemistry of Contemporary Technological Problems" (sponsored by Mobay Corporation) during this meeting and who also reached his 65th birthday in the same year. The symposium was of a multidisciplinary nature and encompassed the fields of theoretical and experimental elec trochemistry, surface science, spectroscopy, and electrochemical technology. The symposium also had an international flavor in that the participants represented several countries Australia, Belgium, Canada, Chile, England, Japan, Korea, the Netherlands, Poland, Switzer land, Venezuela, Yugoslavia, and the United States. The symposium was graciously sponsored by the ACS (Petroleum Research Fund and Division of Colloid and Surface Science), Alcan International, Dow Chemical Company, EG&G, Electrolyzer Corporation, Exxon, General Electric Company, IBM, Institute of Gas Technology, International Association of Hydrogen Energy, Johnson Matthey, Inc., Kerr-McGee Corporation, Medtronics, and Texas A&M University (Center for Electrochemical Systems and Hydrogen Research and the Hampton Robinson Fund). The "theme" of the papers presented at the symposium covered not only significant contributions made to electrochemistry in the twentieth century, but also "New Horizons in Electrochemistry" for the twenty-first century. Thus, the scientists who presented papers were invited to contribute chapters to this book, having the same titles as the symposium."
It is now time for a comprehensive treatise to look at the whole field of electrochemistry. The present treatise was conceived in 1974, and the earliest invitations to authors for contributions were made in 1975. The completion of the early volumes has been delayed by various factors. There has been no attempt to make each article emphasize the most recent situation at the expense of an overall statement of the modern view. This treatise is not a collection of articles from Recent Advances in Electrochemistry or Modern Aspects of Electrochemistry. It is an attempt at making a mature statement about the present position in the vast area of what is best looked at as a new interdisciplinary field. Texas A & M University J. O'M. Bockris University of Ottawa B. E. Conway Case Western Reserve University Ernest Yeager Texas A & M University Ralph E. White Preface to Volume 8 Experimental methods in electrochemistry are becoming more diverse. This volume describes many of the new techniques that are being used as well as some of the well-established techniques. It begins with two chapters (1 and 2) on electronic instrumentation and methods for utilization of microcomputers for experimental data acquisition and reduction. Next, two chapters (3 and 4) on classical methods of electrochemical analysis are presented: ion selective electrodes and polarography.
All significant studies agree that aqueous corrosion continues to cost nations dearly in almost every area of technological endeavour. Over the past ten years, microcomputers have facilitated an explosion in the power of modelling as a technique in science and engineering. In corrosion they have enabled better understanding of polarization curves, they have transformed the scope of electrochemical impedance measurements and they have placed a large range of electrochemistry at the fingertips of the corrosion scientist. This book focuses on the models, rather than the computing, which have been made possible during the past decade. Aimed at all those with an interest in corrosion and its control, the book draws together the range of new modelling strands, suggests new avenues of approach and generates further momentum for improvements to corrosion management, whether by increased understanding of atomistic processes or by control of large plant.
Soot Formation in Combustion represents an up-to-date overview. The contributions trace back to the 1991 Heidelberg symposium entitled "Mechanism and Models of Soot Formation" and have all been reedited by Prof. Bockhorn in close contact with the original authors. The book gives an easy introduction to the field for newcomers, and provides detailed treatments for the specialists. The following list of contents illustrates the topics under review:
The importance of microelectrodes is widely recognised and interest in their application in diverse areas of research has been increasing over the past ten years. In fact, several meetings organized by the International Society of Electrochemistry, The American Chemical Society and The U. S. Electrochemical Society have analysed various aspects of their theory and applications. For this reason it seemed that the time had arrived when scientists from around the world, actively concerned with research in the area of microelectrodes, should meet, exchange ideas and assess the direction of future developments. Furthermore, it seemed appropriate that this meeting should be held as a NATO Advanced Study Institute, so that students and young scientists with research interests in microelectrodes would have the opportunity to interact with experts in the field, establish future collaboration and, hopefully, catalyse new developments in the area. The meeting was held in Alvor, Portugal, in May 1990. This book compiles the lectures delivered in the Institute. It reviews the most important aspects of microelectrodes and points out directions for future research in this field. Several contributions discuss recent developments in theoretical aspects such as the properties of various geometries and computational procedures for solving the equations describing the coupling of mass transport to microelectrodes with heterogeneous electron tranfer and homogeneous chemistry. The materials and methods available for microelectrodes manufacture are presented in some detail. Both steady state and transient techniques are covered and the interaction of theory with experiment is discussed.
This volume contains selected presentations of the IUTAM Symposium on Combustion in Supersonic Flows' held in Poitiers at the Ecole Nationale Superieure de Mecanique et d'Aerotechnique (ENSMA) from 2 to 6 October 1995. The presentations focus on four main topics related to combustion in supersonic streams and practical issues relevant to the development of new propulsion systems: fundamental studies of premixed and unpremixed combustion, fluid dynamics aspects of supersonic combustion, practical systems including Scramjet, Ramaccelerators and Pulsed Detonation Engines, and the application of detonation to propulsion. Important progress has been made in the understanding of local mechanisms which allow combustion to be stabilized in a supersonic flow; in particular, various mechanisms controlled by mixing, chemical kinetics, viscous heating and shock waves are now well identified. Despite the difficulty of developing experimental work on supersonic combustion, a good set of experimental data is now available, allowing validation of theoretical analysis and models. The main aspects of modelling of turbulent combustion in high speed flows were discussed, including the influence of turbulent fluctuations on the chemistry-controlled phase of combustion and the applicability of flamelet models to high speed flows. The full range of numerical approaches is covered including Direct Numerical Simulation, Large Eddy Simulation, k-epsilon and shock tracking methods. A considerable effort has been made to generalize these methods to the treatment of supersonic reactive flows and to develop new numerical methods taking into account the most recent theoretical work and a better understanding of the underlying physics."
This is a book about things in magnetism that interest me. I think that these are important things which will interest a number of other chemists. The restriction is important, because it is difficult to write well about those things which are less familiar to an author. In general, the chemistry and physics of coordination compounds are what this book is about. Magnetochemistry is the study of the ground states of metal ions. When the ions are not interacting, then the study of single-ion phenomena is called paramagnetism. When the metal ions interact, then we are concerned with collective phenomena such as occur in long-range ordering. Several years ago, Hans van Duyneveldt and I published a book that explored these subjects in detail. Since that time, the field has grown tremendously, and there has been a need to bring the book up to date. Furthermore, I have felt that it would be useful to include more subsidiary material to make the work more useful as a textbook. This book is the result of those feelings of mine.
Complex plasmas differ from traditional plasmas in many ways: these are low-temperature high pressure systems containing nanometer to micrometer size particles which may be highly charged and strongly interacting. The particles may be chemically reacting or be in contact with solid surfaces, and the electrons may show quantum behaviour. These interesting properties have led to many applications of complex plasmas in technology, medicine and science. Yet complex plasmas are extremely complicated, both experimentally and theoretically, and require a variety of new approaches which go beyond standard plasma physics courses. This book fills this gap presenting an introduction to theory, experiment and computer simulation in this field. Based on tutorial lectures at a very successful recent Summer Institute, the presentation is ideally suited for graduate students, plasma physicists and experienced undergraduates.
The physicist Kamerlingh Onnes, who was the first to liquify helium (1908), had written on the walls of his laboratory in Leiden: "From measur ing to knowing." As true as this is at very low temperatures, it is just as applicable at the high temperatures of molten salts. Only on the basis of exact measurements by a plethora of experimental methods can any real understanding be reached of both classes of liquids. In both temperature ranges experimental difficulties are much greater than those encountered around ambient temperature. Molten salts often present a formidable challenge to the experimen talist, for example, because of corrosion and other materials problems. Applications of molten salts were for a long time based on empirical knowledge alone. This was true for the first application of molten salts in 1807, when Davy obtained sodium and potassium by electrolysis of the molten hydroxides. For 100 years the winning of aluminum has been based on the very nearly simultaneous invention by Hall and Heroult (1886) of the electrolysis of molten cryolite. The process, though essentially unchanged, has since been perfected owing to an improvement in our understanding of what actually happens, based on difficult measurements ofthe many variables. However, even now there are gaps in our knowledge." |
![]() ![]() You may like...
Machine-Type Communication for Maritime…
Michael Mao Wang, Jingjing Zhang
Hardcover
R3,630
Discovery Miles 36 300
Nanotechnology in Membrane Processes
Kailash Chandra Khulbe, Takeshi Matsuura
Hardcover
R4,887
Discovery Miles 48 870
LED-Based Photoacoustic Imaging - From…
Mithun Kuniyil Ajith Singh
Hardcover
R3,603
Discovery Miles 36 030
Ethics in Nanotechnology - Emerging…
Marcel van de Voorde, Gunjan Jeswani
Hardcover
R5,581
Discovery Miles 55 810
|