![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials
To control mechanical processes one needs to obtain information about the state of the system, to process the information, and then to act on the results. Originally, the simplest controls were purely mechanical feedback systems; more complex systems required human intervention. At present, most controls are provided by purely electromechanical systems, but there are also many situations in which one needs sophisticated measurements for later analysis.
The exponential growth of the number of internet nodes has suddenly created a widespread demand for high-speed optical and electronic devices, circuits, and systems. The new optical revolution has replaced modular, general-purpose building blocks by end-to-end solutions. Greater levels of integration on a single chip enable higher performance and lower cost. The mainstream VLSI technologies such as BiCmos and CMOS continue to take over the territories thus far claimed by GaAs and InP devices. This calls for an up-to-date book describing the design of high-speed electronic circuits for optical communication using modern techniques in a low-cost CMOS process. High-Speed CMOS Circuits for Optical Receivers covers the design of the world's first and second 10 Gb/s clock and data recovery circuits fabricated in a pure CMOS process. The second prototype meets some of the critical requirements recommended by the SONET OC-192 standard. The clock and data recovery circuits consume a power several times lower than in prototypes built in other fabrication processes. High-Speed CMOS Circuits for Optical Receivers describes novel techniques for implementation of such high-speed, high-performance circuits in a pure CMOS process. High-Speed CMOS Circuits for Optical Receivers is written for researchers and students interested in high-speed and mixed-mode circuit design with focus on CMOS circuit techniques. Designers working on various high-speed circuit projects for data communication, including optical com., giga bit ethernet will also find it of interest.
With the ever-increasing speed of integrated circuits, violations of the performance specifications are becoming a major factor affecting the product quality level. The need for testing timing defects is further expected to grow with the current design trend of moving towards deep submicron devices. After a long period of prevailing belief that high stuck-at fault coverage is sufficient to guarantee high quality of shipped products, the industry is now forced to rethink other types of testing. Delay testing has been a topic of extensive research both in industry and in academia for more than a decade. As a result, several delay fault models and numerous testing methodologies have been proposed. Delay Fault Testing for VLSI Circuits presents a selection of existing delay testing research results. It combines introductory material with state-of-the-art techniques that address some of the current problems in delay testing. Delay Fault Testing for VLSI Circuits covers some basic topics such as fault modeling and test application schemes for detecting delay defects. It also presents summaries and conclusions of several recent case studies and experiments related to delay testing. A selection of delay testing issues and test techniques such as delay fault simulation, test generation, design for testability and synthesis for testability are also covered. Delay Fault Testing for VLSI Circuits is intended for use by CAD and test engineers, researchers, tool developers and graduate students. It requires a basic background in digital testing. The book can used as supplementary material for a graduate-level course on VLSI testing.
This volume starts with a description of the metrics and benchmarks used to design energy-efficient microprocessor systems, followed by energy-efficient methodologies for the architecture and circuit design, DC-DC conversion, energy-efficient software and system integration.
"The semiconductor industry is at the forefront of current tensions over international trade and investment in high technology industries. This book traces the struggle between U.S. and Japanese semiconductor producers from its origins in the 1950s to the novel experiment with ""managed trade"" embodied in the U.S.-Japan Semiconductor Trade Arrangements of 1986, and the current debate over continuation of elements of that agreement. Flamm provides a thorough analysis of this experiment and its consequences for U.S. semiconductor producers and users, and presents extensive discussion of patterns of competition within the semiconductor industry. Using a wealth of new data, he argues that a fundamentally new trade regime for high technology industries is needed to escape from the present impasse. He lays out the alternatives, from laissez-faire to managed trade, and argues strongly for a new set of international ground rules to regulate acceptable behavior by government and firms in high-tech industries. Flamm's detailed analysis of competition within the semiconductor industry will be of great value to those interested in the industrial organization of high-technology industries, as well as those concerned with trade and technology policy, international competition, and Japanese industrial policies. "
Advances in the semiconductor technology have enabled steady, exponential im- provement in the performance of integrated circuits. Miniaturization allows the integration of a larger number of transistors with enhanced switching speed. Novel transistor structures and passivation materials diminish circuit delay by minimizing parasitic electrical capacitance. These advances, however, pose several challenges for the thermal engineering of integrated circuits. The low thermal conductivities of passivation layers result in large temperature rises and temperature gradient magni- tudes, which degrade electrical characteristics of transistors and reduce lifetimes of interconnects. As dimensions of transistors and interconnects decrease, the result- ing changes in current density and thermal capacitance make these elements more susceptible to failure during brief electrical overstress. This work develops a set of high-resolution measurement techniques which de- termine temperature fields in transistors and interconnects, as well as the thermal properties of their constituent films. At the heart of these techniques is the thermore- flectance thermometry method, which is based on the temperature dependence of the reflectance of metals. Spatial resolution near 300 nm and temporal resolution near IOns are demonstrated by capturing transient temperature distributions in intercon- nects and silicon-on-insulator (SOl) high-voltage transistors. Analyses of transient temperature data obtained from interconnect structures yield thermal conductivities and volumetric heat capacities of thin films.
Emerging Memories: Technologies and Trends attempts to provide
background and a description of the basic technology, function and
properties of emerging as well as discussing potentially suitable
applications.
Solid State Gas Sensing offers insight into the principles, applications, and new trends in gas sensor technology. Developments in this field are rapidly advancing due to the recent and continuing impact of nanotechnology, and this book addresses the demand for small, reliable, inexpensive and portable systems for monitoring environmental concerns, indoor air quality, food quality, and many other specific applications. Working principles, including electrical, permittivity, field effect, electrochemical, optical, thermometric and mass (both quartz and cantilever types), are discussed, making the book valuable and accessible to a variety of researchers and engineers in the field of material science.
This excellent volume covers a range of materials used for flexible electronics, including semiconductors, dielectrics, and metals. The functional integration of these different materials is treated as well. Fundamental issues for both organic and inorganic materials systems are included. A corresponding overview of technological applications, based on each materials system, is presented to give both the non-specialist and the researcher in the field relevant information on the status of the flexible electronics area.
The past five years have witnessed some dramatic developments in the general area of ferroelectric thin films materials and devices. Ferroelectrics are not new materials by any stretch ofimagination. Indeed, they have been known since the early partofthis century and popular ferroelectric materials such as Barium Titanate have been in use since the second world war. In the late sixties and seventies, a considerable amountofresearch and development effort was made to create a solid state nonvolatile memory using ferroelectrics in a vary simple matrix-addressed scheme. These attempts failed primarily due to problems associated with either the materials ordue to device architectures. The early eighties saw the advent of new materials processing approaches, such as sol-gel processing, that enabled researchers to fabricate sub-micron thin films of ferroelectric materials on a silicon substrate. These pioneering developments signaled the onsetofa revival in the areaofferroelectric thin films, especially ferroelectric nonvolatile memories. Research and development effort in ferroelectric materials and devices has now hit a feverish pitch, Many university laboratories, national laboratories and advanced R&D laboratories oflarge IC manufacturers are deeply involved in the pursuit of ferroelectric device technologies. Many companies worldwide are investing considerable manpower and resources into ferroelectric technologies. Some have already announced products ranging from embedded memories in micro controllers, low density stand-alone memories, microwave circuit elements, andrf identification tags. There is now considerable optimism that ferroelectric devices andproducts will occupy a significant market-share in the new millennium."
This book contains more than the IEEE Standard 1149.4. It also contains the thoughts of those who developed the standard. Adam Osseiran has edited the original writings of Brian Wilkins, Colin Maunder, Rod Tulloss, Steve Sunter, Mani Soma, Keith Lofstrom and John McDermid, all of whom have personally contributed to this standard. To preserve the original spirit, only minor changes were made, and the reader will sense a chapter-to-chapter variation in the style of expression. This may appear awkward to some, although I found the Iack of monotonicity refreshing. A system consists of a specific organization of parts. The function of the system cannot be performed by an individual part or even a disorganized collection ofthe same parts. Testing has a system-like characteristic. Testing of a system does not follow directly from the testing of its parts, and a system built with testable parts can sometimes be impossible to test. Therefore, testability of the system must be organized. Some years ago, the IEEE published the boundary-scan Standard 1149.1. That Standard provided an architecture for digital VLSI chips. The chips designed with the 1149.1 architecture can be integrated into a testable system. However, many systems today contain both analog and digital chips. Even if all digital chips are compliant with the standard, the testability of a mixed-signal system cannot be guaranteed. The new Standard 1149.4, described in this book, extends the previous architecture to mixed-signal systems.
A Flash memory is a Non Volatile Memory (NVM) whose "unit cells" are fabricated in CMOS technology and programmed and erased electrically. In 1971, Frohman-Bentchkowsky developed a folating polysilicon gate tran sistor [1, 2], in which hot electrons were injected in the floating gate and removed by either Ultra-Violet (UV) internal photoemission or by Fowler Nordheim tunneling. This is the "unit cell" of EPROM (Electrically Pro grammable Read Only Memory), which, consisting of a single transistor, can be very densely integrated. EPROM memories are electrically programmed and erased by UV exposure for 20-30 mins. In the late 1970s, there have been many efforts to develop an electrically erasable EPROM, which resulted in EEPROMs (Electrically Erasable Programmable ROMs). EEPROMs use hot electron tunneling for program and Fowler-Nordheim tunneling for erase. The EEPROM cell consists of two transistors and a tunnel oxide, thus it is two or three times the size of an EPROM. Successively, the combination of hot carrier programming and tunnel erase was rediscovered to achieve a single transistor EEPROM, called Flash EEPROM. The first cell based on this concept has been presented in 1979 [3]; the first commercial product, a 256K memory chip, has been presented by Toshiba in 1984 [4]. The market did not take off until this technology was proven to be reliable and manufacturable [5].
Advances in Imaging and Electron Physics, Volume 219, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
The Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET) is a key component in modern microelectronics. During the last decade, device physicists, researchers and engineers have been continuously faced with new elements making the task of MOSFET characterization increasingly crucial, as well as more difficult. The progressive miniaturization of devices has caused several phenomena to emerge and modify the performance of scaled-down MOSFETs. Localized degradation induced by hot carrier injection and Random Telegraph Signal (RTS) noise generated by individual traps are examples. It was thus unavoidable to develop new models and new characterization methods, or at least adapt the existing ones to cope with the special nature of these new phenomena. Characterization Methods for Submicron MOSFETs deals with techniques which show high potential for characterization of submicron devices. Throughout the book the focus is on the adaptation of such methods to resolve measurement problems relevant to VLSI devices and new materials, especially Silicon-on-Insulator (SOI). Characterization Methods for Submicron MOSFETs was written to provide help to device engineers and researchers to enable them to cope with the challenges they face. Without adequate device characterization, new physical phenomena and new types of defects or damage may not be well identified or dealt with, leading to an undoubted obstruction of the device development cycle. Audience: Researchers and graduate students familiar with MOS device physics, working in the field of device characterization and modeling. Also intended for industrial engineers working in device development, seeking to enlarge their understanding ofmeasurement methods. The book additionally addresses device-based characterization for material and process engineers and for circuit designers. A valuable reference that may be used as a text for advanced courses on the subject.
219 8. 2 Sensors 221 8. 3 Physical Sensors 222 8. 3. 1 Electrical Sensing Means 223 8. 3. 2 Magnetic Field Methods 231 8. 3. 3 Optical Methods 232 8. 4 Chemical Sensors 241 8. 4. 1 Electrical Gas and Chemical Sensors 243 8. 4. 2 Guided-Optics Intrinsic Chemical Sensors 246 8. 4. 3 Extrinsic Chemical Sensors 250 8. 4. 4 Polymer Waveguide Chemical Sensors 251 8. 4. 5 Surface Plasmon Chemical Sensors 252 8. 4. 6 Indicator-Mediated Extrinsic Sensing 253 8. 4. 7 Optical Biosensors 256 8. 4. 8 Ultrasonic Gas and Chemical Sensors 257 8. 4. 9 Intelligent Sensors 258 8. 5 Connections/Links and Wiring 258 8. 5. 1 Optical Links 260 8. 5. 2 Requirement on the Processing Unit/Intelligence 262 8. 6 Actuators 263 8. 7 Signal Processing/Computing 264 8. 7. 1 Implicit Computation 266 8. 7. 2 Explicit Computation 267 8. 8 References 274 Subject Index 279 Micro-Actuators (Electrical, Magnetic, Thermal, Optical, Mechanical, and Chemical) It has become quite apparent that sensors and actuators are the main bottleneck of the modem information processing and control systems. Microprocessors and computers used to be the main limiting element in most information processing systems. But thanks to the enonnous progress in the microelectronics industry, most information analysis tasks can be processed in real time. The data has to be acquired by the processor in some form and processed and used to produce some useful function in the real world.
The discovery by J. G. Bednorz and K. A. Mtllier in 1986 that the superconducting state can exist in oxides at temperatures above 30 K stimulated research in the field of superconductivity and opened up a new field of research. Within a few years a large number of cuprate superconductors with transition temperatures well above the boiling point of liquid nitrogen have been found. The possibility of using liquid nitrogen as coolant re-stimulated interest in power applications of supercon ductivity. In this book an overview of the known high-Te superconductors and their physical properties is presented. Aspects related to conductor fabrication and high-current applications are emphasised. The material should be suitable for use in graduate level courses on superconductivity. Researchers in the field may profit from the large number of tables and references describing its status at the end of 1997. An introduction to high-To superconductivity must be based on the fundamental physical principles of normal-state electrical conductivity and the well-known characteristics of conventional superconductors. In Chapter 2 this background is provided. Crystal structures, anisotropic properties and general trends of the critical temperatures of the cuprate superconductors are described in Chapters 3 and 4. The processing of superconductor powders addressed in Chapter 5 affects considerably the current-carrying capacity of high-T. wires. In Chapter 6 several fabrication techniques for superconducting wires are described. In addition, the factors limiting the transport critical currents ofhigh-Te wires are discussed."
Advances in Quantum Chemistry presents surveys of current
developments in this rapidly developing field that falls between
the historically established areas of mathematics, physics,
chemistry, and biology. With invited reviews written by leading
international researchers, each presenting new results, it provides
a single vehicle for following progress in this interdisciplinary
area.
Thanks to the advance of semiconductor and communication technology, the wireless communication market has been booming in the last two decades. It evolved from simple pagers to emerging third-generation (3G) cellular phones. In the meanwhile, broadband communication market has also gained a rapid growth. As the market always demands hi- performance and low-cost products, circuit designers are seeking hi- integration communication devices in cheap CMOS technology. The phase-locked loop frequency synthesizer is a critical component in communication devices. It works as a local oscillator for frequency translation and channel selection in wireless transceivers and broadband cable tuners. It also plays an important role as the clock synthesizer for data converters in the analog-and-digital signal interface. This book covers the design and analysis of PLL synthesizers. It includes both fundamentals and a review of the state-of-the-art techniques. The transient analysis of the third-order charge-pump PLL reveals its locking behavior accurately. The behavioral-level simulation of PLL further clarifies its stability limit. Design examples are given to clearly illustrate the design procedure of PLL synthesizers. A complete derivation of reference spurs in the charge-pump PLL is also presented in this book. The in-depth investigation of the digital CA modulator for fractional-N synthesizers provides insightful design guidelines for this important block.
Device and Circuit Cryogenic Operation for Low Temperature Electronics is a first in reviewing the performance and physical mechanisms of advanced devices and circuits at cryogenic temperatures that can be used for many applications. The first two chapters cover bulk silicon and SOI MOSFETs. The electronic transport in the inversion layer, the influence of impurity freeze-out, the special electrical properties of SOI structures, the device reliability and the interest of a low temperature operation for the ultimate integration of silicon down to nanometer dimensions are described. The next two chapters deal with Silicon-Germanium and III-V Heterojunction Bipolar Transistors, as well as III-V High Electron Mobility Transistors (HEMT). The basic physics of the SiGe HBT and its unique cryogenic capabilities, the optimization of such bipolar devices, and the performance of SiGe HBT BiCMOS technology at liquid nitrogen temperature are examined. The physical effects in III-V semiconductors at low temperature, the HEMT and HBT static, high frequency and noise properties, and the comparison of various cooled III-V devices are also addressed. The next chapter treats quantum effect devices made of silicon materials. The major quantum effects at low temperature, quantum wires, quantum dots as well as single electron devices and applications are investigated. The last chapter overviews the performances of cryogenic circuits and their applications. The low temperature properties and performance of inverters, multipliers, adders, operational amplifiers, memories, microprocessors, imaging devices, circuits and systems, sensors and read-out circuits are analyzed. Device and Circuit Cryogenic Operation for Low Temperature Electronics is useful for researchers, engineers, Ph.D. and M.S. students working in the field of advanced electron devices and circuits, new semiconductor materials, and low temperature electronics and physics.
Wide bandgap semiconductors, made from such materials as GaN, SiC, diamond and ZnSe, are undergoing a strong resurgence in recent years, principally because of their direct bandgaps which give them a huge advantage over the indirect gap SiC. As an example, more than 10 million blue LEDs using this technology are sold each month, and new, high-brightness (15 lumens per watt), very-long-lifetime white LEDs are under development with the potential to replace incandescent bulbs in many situations. WIDE BANDGAP SEMICONDUCTORS provides readers with a broad overview of this rapidly expanding technology, bringing them up to speed on new discoveries and commercial applications. It provides specific technical explanations of key processes such as laser diodes, LEDs and very high temperature electronic controls on engines, focusing on doping, etching, oxidation passivation, growth techniques, and more... The volume also explores the potential use of these semiconductors in HDTV, power conditioning devices, and high power microwave applications. The contributors are all experts in the fields of growth, processing, and characterization of these semiconductors, including II-VI compounds, processing techniques for SiC, GaN and diamond, and materials analysis of all wide gap semiconductors. Key Features: - Explains the development and advantages of broadgap semiconductors, showing their increasing power and their increasingly broader use in commercial and military products - Features step-by-step explanations of key processes in the fabrication of the semiconductors, including chemistry, testing, design, and more - Explores the need for advanced electronics capable of operation at 6000C and how silicon-on-insulator technology will meet this need - Provides an understanding of semiconductor chemistry, thermodynamics and etching, along with technical explanations of common devices, descriptions of processing equipment and techniques, impurity testing, implantation damage, and more
This book deals with optical properties of semiconductors at extremely short (pico- and femtosecond) time scales. The contributions, by an international roster of researchers, cover current research on a wide array of topics.Topics covered include: 1. Coherent Dynamics of Photoexcited Semiconductor Superlattices with Applied Homogeneous Electric Fields (Koch,Meier,Thomas) 2. Ultrafast non-equilibrium dynamics of intersubband excitations in quasi two dimensional semiconductors (Elsaesser,Woerner MPI Berlin) 3. Bloch-Oscillations in Semiconductors: Principles and Applications (Leo, TU Dresden) 4. Electron-velocity overshoot, electron ballistic transport and nonequilibrium phonon dynamics in nanostructure semiconductors (Tsen, Arizona State) 5. Coherent Control of Photocurrents in Semiconductors (Van Driel,Sipe U Toronto ) 6. Ensemble Monte Carlo Simulations of Ultrafast Phenomena in Semiconductors (Ferry & Goodnick, Arizona State) 7. Theory of Coherent Phonon Oscillations in Bulk GaAs (Stanton & Kuznetsov, U Florida) 8.Coherent Spectroscopy on Quantum Wires (Forchel, Bayer, & Bacher, U Wuerzburg) 9. The Vectorial Dynamics of Coherent Emission from Excitions (Smirl, U Iowa)
The exploding number of uses for ultrafast, ultrasmall integrated
circuits has increased the importance of hot-carrier effects in
manufacturing as well as for other technological applications. They
are rapidly movingout of the research lab and into the real
world.
Thisvolumereportsthemajorpartofthescientificcontributionsofthefirstinternational workshoponSuperconductingNano-ElectronicsDevices(SNED)heldinNapoli,Italy,at theendofMay2001. Theaimoftheworkshopwastofocusonrecentexperimentalandtheoreticalresultsin thefieldofsuperconductingnano-electronicsdevices. Itcombinedphysicswithpresent andfuturetechnologicalapplications:bothfundamentalandappliedaspectswerecovered. SpecialemphasiswasgiventoquantumcoherenceandcomputationusingsmallJosephson junctions,noiseinultrasensitivenanodevicesandpossibilitiesofmakinguseofsupercon- ductivityinvariouson-chipdevices. Withtheseattributesandwithrecognizedinvited speakersintheirspecialtiestheworkshopmanagedtobringtogetheracollectionof scientistsfromnearbybutdistinctresearchcommunities. Thiswaytheatmosphereofthe workshopbecameveryopenanddiscussionswerelivelybothduringandoutsidethe sessions. Thisfreshdiscussionhopefullygaveeveryparticipantalotofnewideasfor furtherworkbackintheirhomeinstitutes. OneofthecentraltopicsintheworkshopwastheuseofdifferentJosephsonjunction configurationsasimplementationsofquantumbits. Atthetimeoftheworkshopwewere justwaitingforthesecondwaveofbreakthroughsinthisfield:theresultsemergingfrom theparticipatinglaboratoriesoftheworkshopjustatthetimeofthewritingofthispreface perhapsalsoprovetheusefulnessofourworkshop. Anotherfocuswasonvarioustopicsrelatedtoultrasensativedetectors. Theybring quantumlimitationstoapplications,andmanydeviceconceptsareresultsofunderstanding fundamentalandexcitingphenomenainsuperconductivity. Noiseandon-chipcooling wereexplicitlydiscussedinthedetectorsessionsaswell. ThechoiceofthelocationrecognizestheroleandthetraditionsofNapoliespeciallyin thefieldofmacroscopicquantumcoherence,oneofthemainissuesoftheworkshop. It furtherguaranteedtheparticipantsastimulatingatmosphereatthemeeting. Inconclusion,wewishtothanktheIstitutoItalianopergliStudiFilosofici,theIstituto diCiberneticadelConsiglioNazionaledelleRicerche,theUniversityofJyviiskylii,the IstitutoNazionalediFisicaNucleare,theIstitutoNazionalediFisicadellaMateria,the DipartimentoScienzeFisiche,andtheRettoratodell'UniversitadiNapoli"FedericoII" fortheirsupport. ThanksarealsoduetoAirLiquide,CRY,Nanoway,OxfordInstruments, andRaith. ThisinitiativeisintheframeoftheinternationalactivityofMQC2Association on"MacroscopicQuantumCoherenceandComputing. "WeareindebtedtoC. Granata v vi PREFACE and V. Coratoforscientificassistance,andtoF. Caiazzo,E. DeGrazia,andA. M. Mazzarellafortheirvaluableassistanceinallthetasksconnectedtotheorganizationofthe Workshop. WearealsogratefultoL. Longobardi,A. Monaco,S. Piscitelli,andS. Rombetto forhintsandhelpduringtheWorkshop. ThanksareduetoL. DeFelice,S. Luongo,and V. Sindonifortheorganizationofthesocialevent. J. Pekola B. Ruggiero P. Silvestrini CONTENTS QuantumNondemolitionMeasurementsofaQubit . D. V. Averin BayesianQuantumMeasurementofaSingle-Cooper-PairQubit 11 A. Korotkov lIfNoiseinJosephsonQubits 15 E. Paladino, L. Faoro,G. Falci,and R. Fazio SwitchingCurrentsandQuasi-ParticlePoisoningintheSuperconducting SingleElectronTransistor 25 P. Agren,J. Walter,V. Sch611mann,andD. B. Haviland JosephsonSystemsforQuantumCoherenceExperiments 33 V. Corato,C. Granata, L. Longobardi,M. Russo,B. Ruggiero, andP. Silvestrini SolidStateAnalogueofDoubleSlitInterferometer...43 K. Yu. Arutyunov, T. T. Hongisto,andJ. P. Pekola NoiseandMicrowavePropertiesofSET-Transistors...53 M. Ejrnres,M. T. Savolainen,andJ. Mygind UseofSmallThnnelJunctionsOperatingatT=0. 3K 63 R. Leoni,M. G. Castellano,F. Chiarello,andG. Torrioli AHystericSingleCooperPairTransistorforSingleShotReadingof 73 aCharge-Qubit A. Cottet,D. Vion,P. Joyez,D. Esteve,andM. H. Devoret SingleCooperPairElectrometerBasedonaRadio-Frequency-SQUID Scheme 87 A. B. Zorin vii viii CONTENTS PossibilityofSingle-ElectronDevicesandSuperconductingCoherence 97 Yu. A. Pashkin, Y. Nakamura,T. Yamamoto,andJ. S. Tsai Frequency-LockedCurrentofCooperPairsinSuperconductingSingle ElectronTransistorwithOhmicResistor...105 S. V. Lotkhov,S. A. Bogoslovsky, A. B. Zorin,andJ. Niemeyer SetupforExperimentsontheSupercurrent-PhaseRelationinBloch Transistors-StatusandPossibleApplications 115 M. Gotz, V. V. Khanin, A. B. Zorin,E. Il'ichev,S. A. Bogoslovsky, andJ. Niemeyer Single-ElectronTransistorsintheRegimeofHighConductance...123 C. Wallisser,B;Limblach,P. yomStein,and R. Schiifer SuperconductingTransistor-EdgeSensorsforTime&EnergyResolved Single-PhotonCountersandforDarkMatterSearches 133 B. Cabrera OptimizationoftheHot-ElectronBolometerandaCascadeQuasiparticle 145 L. Kuzrnin NoiseinRefrigeratingTunnelJunctionsandinMicrobolometers...153 D. V. Anghel NonequilibriumQuasiparticlesandElectronCoolingbyNormalMetal- SuperconductorTunnelJunctions...165 D. Golubevand A. Vasenko MesoscopicJosephsonJunctionsCoupledtoWeakCoherentFields: AnExampleofReciprocalDetection 175 R. Miglioreand A. Messina DynamicsofSuperconductingInterferometersContainingPi-Junctions 183 V. K. Kornev, I. I. Soloviev, I. V. Borisenko,P. B. Mozhaev, andG. A.
This book describes semiconductors from a materials science perspective rather than from condensed matter physics or electrical engineering viewpoints. It includes discussion of current approaches to organic materials for electronic devices. It further describes the fundamental aspects of thin film nucleation and growth, and the most common physical and chemical vapor deposition techniques. Examples of the application of the concepts in each chapter to specific problems or situations are included, along with recommended readings and homework problems. |
![]() ![]() You may like...
Triumph Over Abuse - Healing, Recovery…
Christine E. Murray
Paperback
Stability of Nonlinear Shells, Volume 48…
D. Shilkrut, E. Riks
Hardcover
R4,161
Discovery Miles 41 610
Inside The Mind Of Rose West - Wife…
Tanya Farber, Jeremy Daniel
Paperback
Supra-materials Nanoarchitectonics
Katsuhiko Ariga, Masakazu Aono
Hardcover
R5,149
Discovery Miles 51 490
The Tiger Tank and Allied Intelligence…
Bruce Oliver Newsome
Hardcover
R1,127
Discovery Miles 11 270
|