![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials
This book is an in-depth treatment of the theoretical background relevant to an understanding of materials that can be obtained by using high-energy electron diffraction and microscopy.
This thesis presents the first comprehensive analysis of quantum cascade laser nonlinear dynamics and includes the first observation of a temporal chaotic behavior in quantum cascade lasers. It also provides the first analysis of optical instabilities in the mid-infrared range. Mid-infrared quantum cascade lasers are unipolar semiconductor lasers, which have become widely used in applications such as gas spectroscopy, free-space communications or optical countermeasures. Applying external perturbations such as optical feedback or optical injection leads to a strong modification of the quantum cascade laser properties. Optical feedback impacts the static properties of mid-infrared Fabry-Perot and distributed feedback quantum cascade lasers, inducing power increase; threshold reduction; modification of the optical spectrum, which can become either single- or multimode; and enhanced beam quality in broad-area transverse multimode lasers. It also leads to a different dynamical behavior, and a quantum cascade laser subject to optical feedback can oscillate periodically or even become chaotic. A quantum cascade laser under external control could therefore be a source with enhanced properties for the usual mid-infrared applications, but could also address new applications such as tunable photonic oscillators, extreme events generators, chaotic Light Detection and Ranging (LIDAR), chaos-based secured communications or unpredictable countermeasures.
This book presents a collection of invited research and review contributions on recent advances in (mainly) theoretical condensed matter physics, theoretical chemistry, and theoretical physics. The volume celebrates the 90th birthday of N.H. March (Emeritus Professor, Oxford University, UK), a prominent figure in all of these fields. Given the broad range of interests in the research activity of Professor March, who collaborated with a number of eminent scientists in physics and chemistry, the volume embraces quite diverse topics in physics and chemistry, at various dimensions and energy scales. One thread connecting all these topics is correlation in aggregated states of matter, ranging from nuclear physics to molecules, clusters, disordered condensed phases such as the liquid state, and solid state physics, and the various phase transitions, both structural and electronic, occurring therein. A final chapter leaps to an even larger scale of matter aggregation, namely the universe and gravitation. A further no less important common thread is methodological, with the application of theoretical physics and chemistry, particularly density functional theory and statistical field theory, to both nuclear and condensed matter.
This is an overview of different models and mechanisms developed to describe the capture and relaxation of carriers in quantum-dot systems. Despite their undisputed importance, the mechanisms leading to population and energy exchanges between a quantum dot and its environment are not yet fully understood. The authors develop a first-order approach to such effects, using elementary quantum mechanics and an introduction to the physics of semiconductors. The book results from a series of lectures given by the authors at the Master's level.
This two-part book puts the spotlight on how a real-time kernel works using Micrium's C/OS-III kernel as a reference. Part I includes an overview of the operation of real-time kernels, and walks through various aspects of C/OS-III implementation and usage. Part II provides application examples (using the versatile Renesas YRDKRX62N Evaluation Board, available separately) that enable readers to rapidly develop their own prototypes. This book is written for serious embedded systems programmers, consultants, hobbyists, and students interested in understanding the inner workings of a real-time kernel. C/OS-III is not just a great learning platform, but also a full commercial-grade software package, ready to be part of a wide range of products. C/OS-III is a highly portable, ROMable, scalable, preemptive real-time, multitasking kernel designed specifically to address the demanding requirements of today 's embedded systems. C/OS-III is the successor to the highly popular C/OS-II real-time kernel but can use most of C/OS-II 's ports with minor modifications. Some of the features of C/OS-III are: Preemptive multitasking with round-robin scheduling of tasks at
the same priority
ESC is the premature initiation of cracking and embrittlement of a
plastic due to the simultaneous action of stress and strain and
contact with specific fluids. This definition provides the key to
the problem of predictability. Failure is due to a combination of
influences, which would not cause the same problems if encountered
individually.
This textbook, now in its third edition, provides a formative introduction to the structure of matter that will serve as a sound basis for students proceeding to more complex courses, thus bridging the gap between elementary physics and topics pertaining to research activities. The focus is deliberately limited to key concepts of atoms, molecules and solids, examining the basic structural aspects without paying detailed attention to the related properties. For many topics the aim has been to start from the beginning and to guide the reader to the threshold of advanced research. This edition includes four new chapters dealing with relevant phases of solid matter (magnetic, electric and superconductive) and the related phase transitions. The book is based on a mixture of theory and solved problems that are integrated into the formal presentation of the arguments. Readers will find it invaluable in enabling them to acquire basic knowledge in the wide and wonderful field of condensed matter and to understand how phenomenological properties originate from the microscopic, quantum features of nature.
This book discusses the mechanisms of electric conductivity in various ionic liquid systems (protic, aprotic as well as polymerized ionic liquids). It hence covers the electric properties of ionic liquids and their macromolecular counterpanes, some of the most promising materials for the development of safe electrolytes in modern electrochemical energy devices such as batteries, super-capacitors, fuel cells and dye-sensitized solar cells. Chapter contributions by the experts in the field discuss important findings obtained using broadband dielectric spectroscopy (BDS) and other complementary techniques. The book is an excellent introduction for readers who are new to the field of dielectric properties of ionic conductors, and a helpful guide for every scientist who wants to investigate the interplay between molecular structure and dynamics in ionic conductors by means of dielectric spectroscopy.
This book reflects the latest advances in nonlinear optics. Besides the simple, strict mathematical deduction, it also discusses the experimental verification and possible future applications, such as the all-optical switches. It consistently uses the practical unit system throughout. It employs simple physical images, such as "light waves" and "photons" to systematically explain the main principles of nonlinear optical effects. It uses the first-order nonlinear wave equation in frequency domain under the condition of "slowly varying amplitude approximation" and the classical model of the interaction between the light and electric dipole. At the same time, it also uses the rate equations based on the energy-level transition of particle systems excited by photons and the energy and momentum conservation principles to explain the nonlinear optical phenomenon. The book is intended for researchers, engineers and graduate students in the field of optics, optoelectronics, fiber communication, information technology and materials etc.
More than 1,100 TEM images illustrate the science of ULSI The natural outgrowth of VLSI (Very Large Scale Integration), Ultra Large Scale Integration (ULSI) refers to semiconductor chips with more than 10 million devices per chip. Written by three renowned pioneers in their field, ULSI Semiconductor Technology Atlas uses examples and TEM (Transmission Electron Microscopy) micrographs to explain and illustrate ULSI process technologies and their associated problems. The first book available on the subject to be illustrated using TEM images, ULSI Semiconductor Technology Atlas is logically divided into four parts:
This innovative guide also provides engineers and managers in the microelectronics industry, as well as graduate students, with:
This book introduces a novel Ti-Sb-Te alloy for high-speed and low-power phase-change memory applications, which demonstrates a phase-change mechanism that differs significantly from that of conventional Ge2Sb2Te5 and yields favorable overall performance. Systematic methods, combined with better material characteristics, are used to optimize the material components and device performance. Subsequently, a phase-change memory chip based on the optimized component is successfully fabricated using 40-nm complementary metal-oxide semiconductor technology, which offers a number of advantages in many embedded applications.
Failure Mechanisms in Semiconductor Devices Second Edition E. Ajith Amerasekera Texas Instruments Inc., Dallas, USA Farid N. Najm University of Illinois at Urbana-Champaign, USA Since the successful first edition of Failure Mechanisms in Semiconductor Devices, semiconductor technology has become increasingly important. The high complexity of today's integrated circuits has engendered a demand for greater component reliability. Reflecting the need for guaranteed performance in consumer applications, this thoroughly updated edition includes more detailed material on reliability modelling and prediction. The book analyses the main failure mechanisms in terms of cause, effects and prevention and explains the mathematics behind reliability analysis. The authors detail methodologies for the identification of failures and describe the approaches for building reliability into semiconductor devices. Their thorough yet accessible text covers the physics of failure mechanisms from the semiconductor die itself to the packaging and interconnections. Incorporating recent advances, this comprehensive survey of semiconductor reliability will be an asset to both engineers and graduate students in the field.
This book presents the first experiment revealing several unexplored non-equilibrium properties of quantum many-body states, and addresses the interplay between the Kondo effect and superconductivity by probing shot noise. In addition, it describes in detail nano-fabrication techniques for carbon nanotube quantum dots, and a measurement protocol and principle that probes both equilibrium and non-equilibrium quantum states of electrons. The book offers various reviews of topics in mesoscopic systems: shot noise measurement, carbon nanotube quantum dots, the Kondo effect in quantum dots, and quantum dots with superconducting leads, which are relevant to probing non-equilibrium physics. These reviews offer particularly valuable resources for readers interested in non-equilibrium physics in mesoscopic systems. Further, the cutting-edge experimental results presented will allow reader to catch up on a vital new trend in the field.
This thesis reports on the use of scanning tunnelling microscopy to elucidate the atomic-scale electronic structure of a charge density wave, revealing that it has a d-symmetry form factor, hitherto unobserved in nature. It then details the development of an entirely new class of scanned probe: the scanning Josephson tunnelling microscope. This scans the Josephson junction formed between a cuprate superconducting microscope tip and the surface of a cuprate sample, thereby imaging the superfluid density of the sample with nanometer resolution. This novel method is used to establish the existence of a spatially modulated superconducting condensate, something postulated theoretically over half a century ago but never previously observed.
This book describes the design, fabrication and evaluation of a polymer-based neural interface for a cochlear electrode array, reviewed in terms of fabrication process, functionality, and reliability. Polymer-based devices have attracted attention in the neural prosthetic field due to their flexibility and compatibility with micro-fabrication process. A liquid crystal polymer (LCP) is an inert, highly water-resistant polymer suitable for the encapsulation of electronic components and as a substrate material for fabricating neural interfaces. The author has designed, fabricated, and evaluated an LCP-based cochlear electrode array for an improved polymer-based cochlear implant. The thesis deals with 3 key topics: atraumatic deep insertion, tripolar stimulation, and long-term reliability. Atraumatic insertion of the intracochlear electrode and resulting preservation of residual hearing have become essential in state-of-the-art cochlear implantation. A novel tapered design of an LCP-based cochlear electrode array is presented to meet such goals. For high-density and pitch-recognizable cochlear implant, channel interaction should be avoided. Local tripolar stimulation using multi-layered electrode sites are shown to achieve highly focused electrical stimulation. This thesis addresses another vital issue in the polymer-based neural implants: the long-term reliability issue. After suggesting a new method of forming mechanical interlocking to improve polymer-metal adhesion, the author performs accelerating aging tests to verify the method's efficacy. The aforementioned three topics have been thoroughly examined through various in vitro and in vivo studies. Verification foresees the development of LCP-based cochlear electrode array for an atraumatic deep insertion, advanced stimulation, and long-term clinical implant.
Semiconductor Nanowires: Part A, Number 93 in the Semiconductor and Semimetals series, focuses on semiconductor nanowires.
This book gives a comprehensive overview of recent advances in developing nanowires for building various kinds of electronic devices. Specifically the applications of nanowires in detectors, sensors, circuits, energy storage and conversion, etc., are reviewed in detail by the experts in this field. Growth methods of different kinds of nanowires are also covered when discussing the electronic applications. Through discussing these cutting edge researches, the future directions of nanowire electronics are identified.
In the past four years we have witnessed rapid development in technology and significant market penetration in many applications for LED systems. New processes and new materials have been introduced; new standards and new testing methods have been developed; new driver, control and sensing technologies have been integrated; and new and unknown failure modes have also been presented. In this book, Solid State Lighting Reliability Part 2, we invited the experts from industry and academia to present the latest developments and findings in the LED system reliability arena. Topics in this book cover the early failures and critical steps in LED manufacturing; advances in reliability testing and standards; quality of colour and colour stability; degradation of optical materials and the associated chromaticity maintenance; characterization of thermal interfaces; LED solder joint testing and prediction; common failure modes in LED drivers; root causes for lumen depreciation; corrosion sensitivity of LED packages; reliability management for automotive LEDs, and lightning effects on LEDs. This book is a continuation of Solid State Lighting Reliability: Components to Systems (published in 2013), which covers reliability aspects ranging from the LED to the total luminaire or system of luminaires. Together, these two books are a full set of reference books for Solid State Lighting reliability from the performance of the (sub-) components to the total system, regardless its complexity.
The CMOS Cookbook contains all you need to know to understand and
successfully use CMOS (Complementary Metal-Oxide Semiconductor)
integrated circuits. Written in a "cookbook" format that requires
little math, this practical, user-oriented book covers all the
basics for working with digital logic and many of its end
appilations.
This book puts the spotlight on how a real-time kernel works using Micrium s C/OS-III as a reference. The book consists of two complete parts. The first describes real-time kernels in generic terms. Part II provide examples for the reader, using Texas Instruments EVM-EVALBOT, a small, robotic evaluation board. The board is based on the Stellaris LM3S9B92 which combines the popular ARM Cortex-M3(r) architecture with Ethernet MAC+PHY, USB OTG (On-The-Go), and I2S. Together with the IAR Systems Embedded Workbench for ARM development tools, the evaluation board provides everything necessary to enable the reader to be up and running quickly, as well as a fun and educational experience, resulting in a high-level of proficiency in a short time. This book is written for serious embedded systems programmers, consultants, hobbyists, and students interested in understanding the inner workings of a real-time kernel. C/OS-III is not just a great learning platform, but also a full commercial-grade software package, ready to be part of a wide range of products. C/OS-III is a highly portable, ROMable, scalable, preemptive real-time, multitasking kernel designed specifically to address the demanding requirements of today s embedded systems. C/OS-III is the successor to the highly popular C/OS-II real-time kernel but can use most of C/OS-II s ports with minor modifications. Some of the features of C/OS-III are: Preemptive multitasking with round-robin scheduling of tasks at
the same priority
This critical volume examines the different methods used for the synthesis of a great number of photocatalysts, including TiO2, ZnO and other modified semiconductors, as well as characterization techniques used for determining the optical, structural and morphological properties of the semiconducting materials. Additionally, the authors discuss photoelectrochemical methods for determining the light activity of the photocatalytic semiconductors by means of measurement of properties such as band gap energy, flat band potential and kinetics of hole and electron transfer. Photocatalytic Semiconductors: Synthesis, Characterization and Environmental Applications provide an overview of the semiconductor materials from first- to third-generation photocatalysts and their applications in wastewater treatment and water disinfection. The book further presents economic and toxicological aspects in the production and application of photocatalytic materials.
This book highlights how real-time kernels work, using Micrium s C/OS-III as a reference. The book consists of two parts: Part I describes real-time kernels in generic terms, while Part II provides practical examples using NXP s LPC1768 Microcontroller, based on the ARM Cortex M3(rev 2) architecture. A companion evaluation board (Keil MCB1700) and IDE (Keil MDK Evaluation Version) enable the reader to quickly and easily evaluate the microcontroller, tools and RTOS. A range of examples are included, providing a unique hands-on experience, and leading to a faster and better understanding of the concepts presented in the book. This book is written for serious embedded systems programmers, consultants, hobbyists, and students interested in understanding the inner workings of a real-time kernel. C/OS-III is not just a great learning platform, but also a full commercial-grade software package, ready to be part of a wide range of products. C/OS-III is a highly portable, ROMable, scalable, preemptive real-time, multitasking kernel designed specifically to address the demanding requirements of today s embedded systems. C/OS-III is the successor to the highly popular C/OS-II real-time kernel but can use most of C/OS-II s ports with minor modifications. Some of the features of C/OS-III are: Preemptive multitasking with round-robin scheduling of tasks at
the same priority
A new experimental method - the "Stiffnessometer", is developed to measure elementary properties of a superconductor, including the superconducting stiffness and the critical current. This technique has many advantages over existing methods, such as: the ability to measure these properties while minimally disturbing the system; the ability to measure large penetration depths (comparable to sample size), as necessary when approaching the critical temperature; and the ability to measure critical currents without attaching contacts and heating the sample. The power of this method is demonstrated in a study of the penetration depth of LSCO, where striking evidence is found for two separate critical temperatures for the in-plane and out-of-plane directions. The results in the thesis are novel, important and currently have no theoretical explanation. The stiffnessometer in a tool with great potential to explore new grounds in condensed matter physics. |
You may like...
Thin Film Materials for Large Area…
B. Equer, B. Drevillon, …
Hardcover
R3,776
Discovery Miles 37 760
Smart Sensors and MEMS - Intelligent…
S. Nihtianov, A. Luque
Paperback
Quadrupoles in Electron Lens Design…
Martin Hytch, Peter W. Hawkes
Hardcover
R5,223
Discovery Miles 52 230
|