![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials
The book deals with applications of the AdS/CFT correspondence to strongly coupled condensed matter systems. In particular, it concerns with the study of thermo-electric transport properties of holographic models exhibiting momentum dissipation and their possible applications to the transport properties of strange metals. The present volume constitutes one of the few examples in the literature in which the topic is carefully reviewed both from the experimental and theoretical point of view, including not only holographic results but also standard condensed matter achievements developed in the past decades. This work might be extremely useful both for scientific and pedagogical purposes.
In the past four years we have witnessed rapid development in technology and significant market penetration in many applications for LED systems. New processes and new materials have been introduced; new standards and new testing methods have been developed; new driver, control and sensing technologies have been integrated; and new and unknown failure modes have also been presented. In this book, Solid State Lighting Reliability Part 2, we invited the experts from industry and academia to present the latest developments and findings in the LED system reliability arena. Topics in this book cover the early failures and critical steps in LED manufacturing; advances in reliability testing and standards; quality of colour and colour stability; degradation of optical materials and the associated chromaticity maintenance; characterization of thermal interfaces; LED solder joint testing and prediction; common failure modes in LED drivers; root causes for lumen depreciation; corrosion sensitivity of LED packages; reliability management for automotive LEDs, and lightning effects on LEDs. This book is a continuation of Solid State Lighting Reliability: Components to Systems (published in 2013), which covers reliability aspects ranging from the LED to the total luminaire or system of luminaires. Together, these two books are a full set of reference books for Solid State Lighting reliability from the performance of the (sub-) components to the total system, regardless its complexity.
This book highlights how real-time kernels work, using Micrium s C/OS-III as a reference. The book consists of two parts: Part I describes real-time kernels in generic terms, while Part II provides practical examples using NXP s LPC1768 Microcontroller, based on the ARM Cortex M3(rev 2) architecture. A companion evaluation board (Keil MCB1700) and IDE (Keil MDK Evaluation Version) enable the reader to quickly and easily evaluate the microcontroller, tools and RTOS. A range of examples are included, providing a unique hands-on experience, and leading to a faster and better understanding of the concepts presented in the book. This book is written for serious embedded systems programmers, consultants, hobbyists, and students interested in understanding the inner workings of a real-time kernel. C/OS-III is not just a great learning platform, but also a full commercial-grade software package, ready to be part of a wide range of products. C/OS-III is a highly portable, ROMable, scalable, preemptive real-time, multitasking kernel designed specifically to address the demanding requirements of today s embedded systems. C/OS-III is the successor to the highly popular C/OS-II real-time kernel but can use most of C/OS-II s ports with minor modifications. Some of the features of C/OS-III are: Preemptive multitasking with round-robin scheduling of tasks at
the same priority
This book covers in a textbook-like fashion the basics or organic solar cells, addressing the limits of photovoltaic energy conversion and giving a well-illustrated introduction to molecular electronics with focus on the working principle and characterization of organic solar cells. Further chapters based on the author's dissertation focus on the electrical processes in organic solar cells by presenting a detailed drift-diffusion approach to describe exciton separation and charge-carrier transport and extraction. The results, although elaborated on small-molecule solar cells and with focus on the zinc phthalocyanine: C60 material system, are of general nature. They propose and demonstrate experimental approaches for getting a deeper understanding of the dominating processes in amorphous thin-film based solar cells in general. The main focus is on the interpretation of the current-voltage characteristics (J-V curve). This very standard measurement technique for a solar cell reflects the electrical processes in the device. Comparing experimental to simulation data, the author discusses the reasons for S-Shaped J-V curves, the role of charge carrier mobilities and energy barriers at interfaces, the dominating recombination mechanisms, the charge carrier generation profile, and other efficiency-limiting processes in organic solar cells. The book concludes with an illustrative guideline on how to identify reasons for changes in the J-V curve. This book is a suitable introduction for students in engineering, physics, material science, and chemistry starting in the field of organic or hybrid thin-film photovoltaics. It is just as valuable for professionals and experimentalists who analyze solar cell devices.
The CMOS Cookbook contains all you need to know to understand and
successfully use CMOS (Complementary Metal-Oxide Semiconductor)
integrated circuits. Written in a "cookbook" format that requires
little math, this practical, user-oriented book covers all the
basics for working with digital logic and many of its end
appilations.
This book describes new trends in the nanoscience of isotopic materials science. Assuming a background in graduate condensed matter physics and covering the fundamental aspects of isotopic materials science from the very beginning, it equips readers to engage in high-level professional research in this area. The books main objective is to provide insight into the question of why solids are the way they are, either because of how their atoms are bonded with one another, because of defects in their structure, or because of how they are produced or processed. Accordingly, it explores the science of how atoms interact, connects the results to real materials properties, and demonstrates the engineering concepts that can be used to produce or improve semiconductors by design. In addition, it shows how the concepts discussed are applied in the laboratory. The book addresses the needs of researchers, graduate students and senior undergraduate students alike. Although primarily written for materials science audience, it will be equally useful to those teaching in electrical engineering, materials science or even chemical engineering or physics curricula. In order to maintain the focus on materials concepts, however, the book does not burden the reader with details of many of the derivations and equations nor does it delve into the details of electrical engineering topics.
This book is an introduction to a rapidly developing field of modern theoretical physics - the theory of quantum transport at nanoscale. The theoretical methods considered in the book are in the basis of our understanding of charge, spin and heat transport in nanostructures and nanostructured materials and are widely used in nanoelectronics, molecular electronics, spin-dependent electronics (spintronics) and bio-electronics. The book is based on lectures for graduate and post-graduate students at the University of Regensburg and the Technische Universitat Dresden (TU Dresden). The first part is devoted to the basic concepts of quantum transport: Landauer-Buttiker method and matrix Green function formalism for coherent transport, Tunneling (Transfer) Hamiltonian and master equation methods for tunneling, Coulomb blockade, vibrons and polarons. The results in this part are obtained as possible without sophisticated techniques, such as nonequilibrium Green functions, which are considered in detail in the second part. A general introduction into the nonequilibrium Green function theory is given. The approach based on the equation-of-motion technique, as well as more sophisticated one based on the Dyson-Keldysh diagrammatic technique are presented. The main attention is paid to the theoretical methods able to describe the nonequilibrium (at finite voltage) electron transport through interacting nanosystems, specifically the correlation effects due to electron-electron and electron-vibron interactions.
This book offers a theoretical description of topological matter in terms of effective field theories, and in particular topological field theories, focusing on two main topics: topological superconductors and topological insulators.Even though there is vast literature on these subjects, the book fills an important gap by providing a concise introduction to both topological order and symmetry-protected phases using a modern mathematical language, and developing the theoretical concepts by highlighting the physics and the physical properties of the systems. Further, it discusses in detail the topological interactions for topologically ordered matter, and the response to smooth external fields for symmetry protected matter. The book also covers more specialized topics that cannot be found elsewhere. Specifically, the response of superconductors to geometry, including the newly discovered geo-Meissner effect; and a correction to the usual Meissner effect, only present in the topologically interesting chiral superconductors.
This thesis presents various characteristics of 122-type iron pnictide (FeSC) such as crystal and electronic structure, carrier-doping effect, and impurity-scattering effect, using transport, magnetization, specific heat, single-crystal X-ray diffraction, and optical spectral measurements. Most notably the measurement on the magnetic fluctuation in the material successfully explains already known unusual electronic properties, i.e., superconducting gap symmetry, anisotropy of in-plane resistivity in layered structure, and charge dynamics; and comparing them with those of normal phase, the controversial problems in FeSCs are eventually settled. The thesis provides broad coverage of the physics of FeSCs both in the normal and superconducting phase, and readers therefore benefit from the efficient up-to-date study of FeSCs in this thesis. An additional attraction is the detailed description of the experimental result critical for the controversial problems remaining since the discovery of FeSC in 2008, which helps readers follow up recent developments in superconductor research.
Rare Earth and Transition Metal Doping of Semiconductor Material explores traditional semiconductor devices that are based on control of the electron's electric charge. This book looks at the semiconductor materials used for spintronics applications, in particular focusing on wide band-gap semiconductors doped with transition metals and rare earths. These materials are of particular commercial interest because their spin can be controlled at room temperature, a clear opposition to the most previous research on Gallium Arsenide, which allowed for control of spins at supercold temperatures. Part One of the book explains the theory of magnetism in semiconductors, while Part Two covers the growth of semiconductors for spintronics. Finally, Part Three looks at the characterization and properties of semiconductors for spintronics, with Part Four exploring the devices and the future direction of spintronics.
This is a specialized book for researchers and technicians of universities and companies who are interested in the fundamentals of RF power semiconductors, their applications and market penetration.Looking around, we see that products using vacuum tube technology are disappearing. For example, branch tube TVs have changed to liquid crystal TVs, and fluorescent light have turned into LED. The switch from vacuum tube technology to semiconductor technology has progressed remarkably. At the same time, high-precision functionalization, miniaturization and energy saving have advanced. On the other hand, there is a magnetron which is a vacuum tube device for generating microwaves. However, even this vacuum tube technology has come to be replaced by RF power semiconductor technology. In the last few years the price of semiconductors has dropped sharply and its application to microwave heating and energy fields will proceed. In some fields the transition from magnetron microwave oscillator to semiconductor microwave oscillator has already begun. From now on this development will progress remarkably. Although there are several technical books on electrical systems that explain RF power semiconductors, there are no books yet based on users' viewpoints on actual microwave heating and energy fields. In particular, none have been written about exact usage and practical cases, to answer questions such as "What are the advantages and disadvantages of RF power semiconductor oscillator?", "What kind of field can be used?" and the difficulty of the market and application. Based on these issues, this book explains the RF power semiconductors from the user's point of view by covering a very wide range of fields.
This book is a must-have reference to dry etching technology for semiconductors, which will enable engineers to develop new etching processes for further miniaturization and integration of semiconductor integrated circuits. The author describes the device manufacturing flow, and explains in which part of the flow dry etching is actually used. The content is designed as a practical guide for engineers working at chip makers, equipment suppliers and materials suppliers, and university students studying plasma, focusing on the topics they need most, such as detailed etching processes for each material (Si, SiO2, Metal etc) used in semiconductor devices, etching equipment used in manufacturing fabs, explanation of why a particular plasma source and gas chemistry are used for the etching of each material, and how to develop etching processes. The latest, key technologies are also described, such as 3D IC Etching, Dual Damascene Etching, Low-k Etching, Hi-k/Metal Gate Etching, FinFET Etching, Double Patterning etc.
This book provides readers with a variety of tools to address the challenges posed by hot carrier degradation, one of today's most complicated reliability issues in semiconductor devices. Coverage includes an explanation of carrier transport within devices and book-keeping of how they acquire energy ("become hot"), interaction of an ensemble of colder and hotter carriers with defect precursors, which eventually leads to the creation of a defect, and a description of how these defects interact with the device, degrading its performance.
Authored by many of the world's leading experts on high-Tc superconductivity, this volume presents a panorama of ongoing research in the field, as well as insights into related multifunctional materials. The contributions cover many different and complementary aspects of the physics and materials challenges, with an emphasis on superconducting materials that have emerged since the discovery of the cuprate superconductors, for example pnictides, MgB2, H2S and other hydrides. Special attention is also paid to interface superconductivity. In addition to superconductors, the volume also addresses materials related to polar and multifunctional ground states, another class of materials that owes its discovery to Prof. Muller's ground-breaking research on SrTiO3.
This book provides a systematical and comprehensive description of some facets of modeling, designing, analyzing and exploring the control allocation and fault-tolerant control problems for over-actuated spacecraft attitude control system under actuator failures, system uncertainties and disturbances. The book intends to provide a unified platform for understanding and applicability of the fault-tolerant attitude control and control allocation for different purposes in aerospace engineering and some related fields. And it is particularly suited for readers who are interested to learn solutions in spacecraft attitude control system design and related engineering applications.
This book introduces a variety of basic sciences and applications of the nanocomposites and heterostructures of functional oxides. The presence of a high density of interfaces and the differences in their natures are described by the authors. Both nanocomposites and heterostructures are detailed in depth by researchers from each of the research areas in order to compare their similarities and differences. A new interfacial material of heterostructure of strongly correlated electron systems is introduced.
Volume 7 & 8
Volume 7 & 8 The device sizes in the semiconductor industries are shrinking, devices become more vulnerable to smaller contaminant particles, and most conventional cleaning techniques employed in the industry are not effective at smaller scales. New cleaning techniques will have to be considered and employed for contaminant removal. Similarly, new cleaning techniques for molecular contaminants will also have to be deployed. The book series "Developments in Surface Contamination and Cleaning" as a whole will provide an excellent source of information on these alternative cleaning techniques as well as methods for characterization and validation of surface contamination. Each volume has a particular topical focus, covering the key techniques and recent developments in the area. Volume 7: Contamination Sources, Measurement, Validation, and Regulatory Aspects The chapters in this Volume addressthesources of surface contaminants and various methods for theircollection and characterization, as well as methods for cleanliness validation. Regulatory aspects of cleaning are also covered. The collection of topics in this book is unique and complements other volumes in this series. Volume 7 & 8 Edited by the leading experts in small-scale particle surface
contamination, cleaning and cleaning control this book will be an
invaluable reference for researchers and engineers in R&D,
manufacturing, quality control and procurement specification
situated in a multitude of industries such as: aerospace,
automotive, biomedical, defense, energy, manufacturing,
microelectronics, optics and xerography. Researchers in an academic
setting will also find these volumes excellent source books.
The 3rd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2015) was held from 19-23 October 2015. This congress focused on the latest developments of sustainable energy technologies, materials for sustainable energy applications and environmental and economic perspectives of energy. These proceedings included 40 peer-reviewed technical papers, submitted by leading academic and research institutions from over 23 countries and represented some of the most cutting-edge researches available. The sections included in the 40 papers are listed as follows: Solar Energy, Fuel cells, Hydrogen productions, Hydrogen storage, Energy storage, Energy saving, Biofuels and Bioenergy, Wind Energy, Nuclear Energy, Fossil Energy, Hydropower, Carbon capture and storage, Materials for renewable energy storage and conversion, Photovoltaics and solar cells, Fuel generation from renewables (catalysis), Carbon dioxide sequestration and conversion, Materials for energy saving, Thermoelectrics, Energy saving in buildings, Bio-Assessment and Toxicology, Air pollution from mobile and stationary sources, Transport of Air Pollutants, Environment-Friendly Construction and Development, Energy Management Systems.
This revised and updated edition of the well-received book by C. Klingshirn provides an introduction to and an overview of all aspects of semiconductor optics, from IR to visible and UV. It has been split into two volumes and rearranged to offer a clearer structure of the course content. Inserts on important experimental techniques as well as sections on topical research have been added to support research-oriented teaching and learning. Volume 1 provides an introduction to the linear optical properties of semiconductors. The mathematical treatment has been kept as elementary as possible to allow an intuitive approach to the understanding of results of semiconductor spectroscopy. Building on the phenomenological model of the Lorentz oscillator, the book describes the interaction of light with fundamental optical excitations in semiconductors (phonons, free carriers, excitons). It also offers a broad review of seminal research results augmented by concise descriptions of the relevant experimental techniques, e.g., Fourier transform IR spectroscopy, ellipsometry, modulation spectroscopy and spatially resolved methods, to name a few. Further, it picks up on hot topics in current research, like quantum structures, mono-layer semiconductors or Perovskites. The experimental aspects of semiconductor optics are complemented by an in-depth discussion of group theory in solid-state optics. Covering subjects ranging from physics to materials science and optoelectronics, this book provides a lively and comprehensive introduction to semiconductor optics. With over 120 problems, more than 480 figures, abstracts to each chapter, as well as boxed inserts and a detailed index, it is intended for use in graduate courses in physics and neighboring sciences like material science and electrical engineering. It is also a valuable reference resource for doctoral and advanced researchers.
This work studies the magnetic behavior of ZnO nanoparticles capped with different organic molecules and showing room-temperature ferromagnetism (RTFM). Of particular significance is the combination of element-specific X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) techniques, which demonstrates the intrinsic occurrence of RTFM in these systems and indicates that it is not related to the 3-D states of the metallic cation but is relayed along the conduction band of the semiconductor. The discovery of room-temperature ferromagnetism (RTFM) in semiconductors holds great promise in future spintronics technologies. Further results presented here include O K-edge XMCD studies, which demonstrate that the oxygen ions have a ferromagnetic response in these ZnO-based systems, providing the first direct support for claims regarding the appearance of oxygen ferromagnetism in oxide semiconductors at the nanoscale. |
![]() ![]() You may like...
Metal Oxide-Carbon Hybrid Materials…
Muhammad Akram Chaudhry, Rafaqat Hussain, …
Paperback
R5,259
Discovery Miles 52 590
Functionalized Nanomaterials for…
Sudheesh K. Shukla, Chaudhery Mustansar Hussain, …
Paperback
R5,249
Discovery Miles 52 490
|