![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials
This book reviews the current state-of-the art of single layer silicene up to thicker silicon nanosheets, and their structure, properties and potential applications. Silicene is a newly discovered material that is one atomic layer think. It is a two-dimensional (2D) nanomaterial that is classified as a nanosheet, which has large lateral dimensions up to micrometres, but thicknesses of only nanometres or less. Silicon nanosheets are currently a very 'hot' area of research. The unique properties and morphology of such materials make them ideal for a variety of applications, including electronic devices, batteries and sensors. 2D nanosheets of silicon can be considered as analogues of graphene. As silicon is already the major component of electronic devices, the significance of nanosheets composed of silicon is that they can be more easily integrated into existing electronic devices. Furthermore, if 2D nanostructured Si can be implemented into such devices, then their size could be reduced into the nano-regime, providing unique properties different from bulk Si that is currently employed. The book is written for researchers and graduate students.
Nonlinear optical (NLO) phenomena such as frequency conversion have
played a key role in the development of photonic technologies. This
thesis reports a detailed study of the molecular response of a
large variety of push-pull organic compounds using the Second
Harmonic Generation technique, which will serve as a starting point
for the investigation at the macroscopic scale of azobenzene-based
liquid crystalline polymeric films and their blends with highly
efficient NLO
This work provides a comprehensive discussion of the bias dependence of equivalent circuit parameters for the three devices and an extensive discussion of temperature dependence. It: covers recess-etched MESFETs and self-aligned MESFETs with and without lightly-doped-drains and JFETs; analyzes GaAs-based pHEMTS and InP lattice-matched HEMT equivalent circuits; and describes a large-signal, temperature-dependent model extractor for A1GaAs-GaAs HBTs. The book is intended for circuit designers, process and device developers and test engineers.
Provides a multidisciplinary introduction to quantum mechanics, solid state physics, advanced devices, and fabrication Covers wide range of topics in the same style and in the same notation Most up to date developments in semiconductor physics and nano-engineering Mathematical derivations are carried through in detail with emphasis on clarity Timely application areas such as biophotonics, bioelectronics
This book demonstrates how the new phenomena in superconductivity on the nanometer scale (FFLO state, triplet superconductivity, Crossed Andreev Reflection, synchronized generation etc.) serve as the basis for the invention and development of novel nanoelectronic devices and systems. It demonstrates how rather complex ideas and theoretical models, like odd-pairing, non-uniform superconducting state, pi-shift etc., adequately describe the processes in real superconducting nanostructues and novel devices based on them. The book is useful for a broad audience of readers, researchers, engineers, PhD-students, lectures and others who would like to gain knowledge in the frontiers of superconductivity at the nanoscale.
The book considers the main growth-related phenomena occurring
during epitaxial growth, such as thermal etching, doping,
segregation of the main elements and impurities, coexistence of
several phases at the crystal surface and segregation-enhanced
diffusion.
This book explains physics under the operating principles of semiconductor lasers in detail based on the experience of the author, dealing with the first manufacturing of phase-shifted DFB-LDs and recent research on transverse modes. The book also bridges a wide gap between journal papers and textbooks, requiring only an undergraduate-level knowledge of electromagnetism and quantum mechanics, and helps readers to understand journal papers where definitions of some technical terms vary, depending on the paper. Two definitions of the photon density in the rate equations and two definitions of the phase-shift in the phase-shifted DFB-LD are explained, and differences in the calculated results are indicated, depending on the definitions. Readers can understand the physics of semiconductor lasers and analytical tools for Fabry-Perot LDs, DFB-LDs, and VCSELs and will be stimulated to develop semiconductor lasers themselves.
To control mechanical processes one needs to obtain information about the state of the system, to process the information, and then to act on the results. Originally, the simplest controls were purely mechanical feedback systems; more complex systems required human intervention. At present, most controls are provided by purely electromechanical systems, but there are also many situations in which one needs sophisticated measurements for later analysis.
This book presents the current knowledge about nonlinear localized travelling excitations in crystals. Excitations can be vibrational, electronic, magnetic or of many other types, in many different types of crystals, as silicates, semiconductors and metals. The book is dedicated to the British scientist FM Russell, recently turned 80. He found 50 years ago that a mineral mica muscovite was able to record elementary charged particles and much later that also some kind of localized excitations, he called them quodons, was also recorded. The tracks, therefore, provide a striking experimental evidence of quodons existence. The first chapter by him presents the state of knowledge in this topic. It is followed by about 18 chapters from world leaders in the field, reviewing different aspects, materials and methods including experiments, molecular dynamics and theory and also presenting the latest results. The last part includes a personal narration of FM Russell of the deciphering of the marks in mica. It provides a unique way to present the science in an accessible way and also illustrates the process of discovery in a scientist's mind.
This book provides a comprehensive introduction to integrated optical waveguides for information technology and data communications. Integrated coverage ranges from advanced materials, fabrication, and characterization techniques to guidelines for design and simulation. A concluding chapter offers perspectives on likely future trends and challenges. The dramatic scaling down of feature sizes has driven exponential improvements in semiconductor productivity and performance in the past several decades. However, with the potential of gigascale integration, size reduction is approaching a physical limitation due to the negative impact on resistance and inductance of metal interconnects with current copper-trace based technology. Integrated optics provides a potentially lower-cost, higher performance alternative to electronics in optical communication systems. Optical interconnects, in which light can be generated, guided, modulated, amplified, and detected, can provide greater bandwidth, lower power consumption, decreased interconnect delays, resistance to electromagnetic interference, and reduced crosstalk when integrated into standard electronic circuits. Integrated waveguide optics represents a truly multidisciplinary field of science and engineering, with continued growth requiring new developments in modeling, further advances in materials science, and innovations in integration platforms. In addition, the processing and fabrication of these new devices must be optimized in conjunction with the development of accurate and precise characterization and testing methods. Students and professionals in materials science and engineering will find "Advanced Materials for Integrated Optical Waveguides" to be an invaluable reference for meeting these research and development goals.
Predictive Simulation of Semiconductor Processing enables researchers and developers to extend the scaling range of semiconductor devices beyond the parameter range of empirical research. It requires a thorough understanding of the basic mechanisms employed in device fabrication, such as diffusion, ion implantation, epitaxy, defect formation and annealing, and contamination. This book presents an in-depth discussion of our current understanding of key processes and identifies areas that require further work in order to achieve the goal of a comprehensive, predictive process simulation tool.
With the advent of portable and autonomous computing systems, power con sumption has emerged as a focal point in many research projects, commercial systems and DoD platforms. One current research initiative, which drew much attention to this area, is the Power Aware Computing and Communications (PAC/C) program sponsored by DARPA. Many of the chapters in this book include results from work that have been supported by the PACIC program. The performance of computer systems has been tremendously improving while the size and weight of such systems has been constantly shrinking. The capacities of batteries relative to their sizes and weights has been also improv ing but at a rate which is much slower than the rate of improvement in computer performance and the rate of shrinking in computer sizes. The relation between the power consumption of a computer system and it performance and size is a complex one which is very much dependent on the specific system and the technology used to build that system. We do not need a complex argument, however, to be convinced that energy and power, which is the rate of energy consumption, are becoming critical components in computer systems in gen eral, and portable and autonomous systems, in particular. Most of the early research on power consumption in computer systems ad dressed the issue of minimizing power in a given platform, which usually translates into minimizing energy consumption, and thus, longer battery life."
The exponential growth of the number of internet nodes has suddenly created a widespread demand for high-speed optical and electronic devices, circuits, and systems. The new optical revolution has replaced modular, general-purpose building blocks by end-to-end solutions. Greater levels of integration on a single chip enable higher performance and lower cost. The mainstream VLSI technologies such as BiCmos and CMOS continue to take over the territories thus far claimed by GaAs and InP devices. This calls for an up-to-date book describing the design of high-speed electronic circuits for optical communication using modern techniques in a low-cost CMOS process. High-Speed CMOS Circuits for Optical Receivers covers the design of the world's first and second 10 Gb/s clock and data recovery circuits fabricated in a pure CMOS process. The second prototype meets some of the critical requirements recommended by the SONET OC-192 standard. The clock and data recovery circuits consume a power several times lower than in prototypes built in other fabrication processes. High-Speed CMOS Circuits for Optical Receivers describes novel techniques for implementation of such high-speed, high-performance circuits in a pure CMOS process. High-Speed CMOS Circuits for Optical Receivers is written for researchers and students interested in high-speed and mixed-mode circuit design with focus on CMOS circuit techniques. Designers working on various high-speed circuit projects for data communication, including optical com., giga bit ethernet will also find it of interest.
This volume starts with a description of the metrics and benchmarks used to design energy-efficient microprocessor systems, followed by energy-efficient methodologies for the architecture and circuit design, DC-DC conversion, energy-efficient software and system integration.
This book reviews the structure and electronic, magnetic, and other properties of various MoS2 (Molybdenum disulfide) nanostructures, with coverage of synthesis, Valley polarization, spin physics, and other topics. MoS2 is an important, graphene-like layered nano-material that substantially extends the range of possible nanostructures and devices for nanofabrication. These materials have been widely researched in recent years, and have become an attractive topic for applications such as catalytic materials and devices based on field-effect transistors (FETs) and semiconductors. Chapters from leading scientists worldwide create a bridge between MoS2 nanomaterials and fundamental physics in order to stimulate readers' interest in the potential of these novel materials for device applications. Since MoS2 nanostructures are expected to be increasingly important for future developments in energy and other electronic device applications, this book can be recommended for Physics and Materials Science and Engineering departments and as reference for researchers in the field.
Gaining public attention due, in part, to their potential application as energy storage devices in cars, Lithium-ion batteries have encountered widespread demand, however, the understanding of lithium-ion technology has often lagged behind production. This book defines the most commonly encountered challenges from the perspective of a high-end lithium-ion manufacturer with two decades of experience with lithium-ion batteries and over six decades of experience with batteries of other chemistries. Authors with years of experience in the applied science and engineering of lithium-ion batteries gather to share their view on where lithium-ion technology stands now, what are the main challenges, and their possible solutions. The book contains real-life examples of how a subtle change in cell components can have a considerable effect on cell's performance. Examples are supported with approachable basic science commentaries. Providing a unique combination of practical know-how with an in-depth perspective, this book will appeal to graduate students, young faculty members, or others interested in the current research and development trends in lithium-ion technology.
This book represents a significant advance in our understanding of the synthesis and properties of two-dimensional (2D) materials. The author's work breaks new ground in the understanding of a number of 2D crystals, including atomically thin transition metal dichalcogenides, graphene, and their heterostructures, that are technologically important to next-generation electronics. In addition to critical new results on the direct growth of 2D heterostructures, it also details growth mechanisms, surface science, and device applications of "epi-grade" 2D semiconductors, which are essential to low-power electronics, as well as for extending Moore's law. Most importantly, it provides an effective alternative to mechanically exfoliate 2D layers for practical applications.
This thesis demonstrates the novel magnetic functionalities in cyanido-bridged metal assemblies, and as such appeals to readers in the field of materials science. The utilization of octacyanidometalates as building blocks enables the observation of (i) photo-induced magnetization due to a light-induced spin-crossover in an iron octacyanidoniobate-based assembly, (ii) photo-induced magnetization with a two-step spin-crossover behavior in an iron octacyanidoniobate-based material, and (iii) the coexistence of super-ionic conductivity and metamagnetism in a manganese-octacyanoniobate system. These multi-functionalities are achieved by incorporating a spin-crossover moiety or a hydrogen-bonding network into a cyanido-bridged network structure with a strong magnetic interaction. In particular, in light-induced spin-crossover magnets, a magnetically non-ordered state can be altered to a magnetically ordered state by photo-irradiation, which is one of the attractive mechanisms for novel optical switching devices.
Ion implantation is one of the key processing steps in silicon integrated circuit technology. Some integrated circuits require up to 17 implantation steps and circuits are seldom processed with less than 10 implantation steps. Controlled doping at controlled depths is an essential feature of implantation. Ion beam processing can also be used to improve corrosion resistance, to harden surfaces, to reduce wear and, in general, to improve materials properties. This book presents the physics and materials science of ion implantation and ion beam modification of materials. It covers ion-solid interactions used to predict ion ranges, ion straggling and lattice disorder. Also treated are shallow-junction formation and slicing silicon with hydrogen ion beams. Topics important for materials modification topics, such as ion-beam mixing, stresses, and sputtering, are also described.
This book presents the fundamentals of novel gate dielectrics that are being introduced into semiconductor manufacturing to ensure the continuous scaling of CMOS devices. As this is a rapidly evolving field of research we choose to focus on the materials that determine the performance of device applications. Most of these materials are transition metal oxides. Ironically, the d-orbitals responsible for the high dielectric constant cause severe integration difficulties, thus intrinsically limiting high-k dielectrics. Though new in the electronics industry many of these materials are well-known in the field of ceramics, and we describe this unique connection. The complexity of the structure-property relations in TM oxides requires the use of state-of-the-art first-principles calculations. Several chapters give a detailed description of the modern theory of polarization, and heterojunction band discontinuity within the framework of the density functional theory. Experimental methods include oxide melt solution calorimetry and differential scanning calorimetry, Raman scattering and other optical characterization techniques, transmission electron microscopy, and X-ray photoelectron spectroscopy. Many of the problems encountered in the world of CMOS are also relevant for other semiconductors such as GaAs. A comprehensive review of recent developments in this field is thus also given. The book will be of interest to those actively engaged in gate dielectric research, and to graduate students in Materials Science, Materials Physics, Materials Chemistry, and Electrical Engineering.
Advances in the semiconductor technology have enabled steady, exponential im- provement in the performance of integrated circuits. Miniaturization allows the integration of a larger number of transistors with enhanced switching speed. Novel transistor structures and passivation materials diminish circuit delay by minimizing parasitic electrical capacitance. These advances, however, pose several challenges for the thermal engineering of integrated circuits. The low thermal conductivities of passivation layers result in large temperature rises and temperature gradient magni- tudes, which degrade electrical characteristics of transistors and reduce lifetimes of interconnects. As dimensions of transistors and interconnects decrease, the result- ing changes in current density and thermal capacitance make these elements more susceptible to failure during brief electrical overstress. This work develops a set of high-resolution measurement techniques which de- termine temperature fields in transistors and interconnects, as well as the thermal properties of their constituent films. At the heart of these techniques is the thermore- flectance thermometry method, which is based on the temperature dependence of the reflectance of metals. Spatial resolution near 300 nm and temporal resolution near IOns are demonstrated by capturing transient temperature distributions in intercon- nects and silicon-on-insulator (SOl) high-voltage transistors. Analyses of transient temperature data obtained from interconnect structures yield thermal conductivities and volumetric heat capacities of thin films.
This book describes the operation of a particular technique for the
production of compound semiconductor materials. It describes how
the technique works, how it can be used for the growth of
particular materials and structures, and the application of these
materials for specific devices. It contains not only a fundamental
description of the operation of the technique but also contains
lists of data useful for the everyday operation of OMVPE reactors.
It also offers specific recipes that can be used to produce a wide
range of specific materials, structures, and devices.
With the ever-increasing speed of integrated circuits, violations of the performance specifications are becoming a major factor affecting the product quality level. The need for testing timing defects is further expected to grow with the current design trend of moving towards deep submicron devices. After a long period of prevailing belief that high stuck-at fault coverage is sufficient to guarantee high quality of shipped products, the industry is now forced to rethink other types of testing. Delay testing has been a topic of extensive research both in industry and in academia for more than a decade. As a result, several delay fault models and numerous testing methodologies have been proposed. Delay Fault Testing for VLSI Circuits presents a selection of existing delay testing research results. It combines introductory material with state-of-the-art techniques that address some of the current problems in delay testing. Delay Fault Testing for VLSI Circuits covers some basic topics such as fault modeling and test application schemes for detecting delay defects. It also presents summaries and conclusions of several recent case studies and experiments related to delay testing. A selection of delay testing issues and test techniques such as delay fault simulation, test generation, design for testability and synthesis for testability are also covered. Delay Fault Testing for VLSI Circuits is intended for use by CAD and test engineers, researchers, tool developers and graduate students. It requires a basic background in digital testing. The book can used as supplementary material for a graduate-level course on VLSI testing.
This manual is intended to guide and facilitate human anatomical dissections. It is flexible enough for use in long as well as short courses. It can be particularly useful as a link with real anatomy when used together with computerised-anatomy programs, or where students do not dissect but merely look at atlases, prosections and models. There is an introduction for each anatomical region; and for each section to be dissected there is an overview, a dissection schedule which guides the student through a set of instructions, a summary and a list of objectives that are clinically important. The terminology used is the latest. The manual is suitable for medical and dental students. It is also of value for advanced knowledge of anatomy for surgery and in relation to the interpretation of normal anatomy in non-invasive imaging of anatomy for clinical diagnosis, surgical practice on cadaveric material, and in discussions about clinical problems.
Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only reviews the progress made since the early days of pulsar astronomy, but especially focuses on questions such as: "What have we learned about the subject and how did we learn it?," "What are the most important open questions in this area?" and "What new tools, telescopes, observations, and calculations are needed to answer these questions?." All authors who have contributed to this book have devoted a significant part of their scientific careers to exploring the nature of neutron stars and understanding pulsars. Everyone has paid special attention to writing educational comprehensive review articles with the needs of beginners, students and young scientists as potential readers in mind. This book will be a valuable source of information for these groups. |
You may like...
Ion Implantation into Semiconductors…
B.G. Svensson, H. A Atwater, …
Hardcover
R4,422
Discovery Miles 44 220
Lossless Information Hiding in Images
Zheming Lu, Shize Guo
Paperback
Smart Sensors and MEMS - Intelligent…
S. Nihtianov, A. Luque
Paperback
|