Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials
Density functional theory (DFT) has become the standard
workhorse for quantum mechanical simulations as it offers a good
compromise between accuracy and computational cost.
"System level testing is becoming increasingly important. It is driven by the incessant march of complexity ... which is forcing us to renew our thinking on the processes and procedures that we apply to test and diagnosis of systems. In fact, the complexity defines the system itself which, for our purposes, is Aany aggregation of related elements that together form an entity of sufficient complexity for which it is impractical to treat all of the elements at the lowest level of detail . System approaches embody the partitioning of problems into smaller inter-related subsystems that will be solved together. Thus, words like hierarchical, dependence, inference, model, and partitioning are frequent throughout this text. Each of the authors deals with the complexity issue in a similar fashion, but the real value in a collected work such as this is in the subtle differences that may lead to synthesized approaches that allow even more progress. The works included in this volume are an outgrowth of the 2nd International Workshop on System Test and Diagnosis held in Alexandria, Virginia in April 1998. The first such workshop was held in Freiburg, Germany, six years earlier. In the current workshop nearly 50 experts from around the world struggled over issues concerning the subject... In this volume, a select group of workshop participants was invited to provide a chapter that expanded their workshop presentations and incorporated their workshop interactions... While we have attempted to present the work as one volume and requested some revision to the work, the content of the individual chapters was not edited significantly. Consequently, you will see different approaches to solving the sameproblems and occasional disagreement between authors as to definitions or the importance of factors. ... The works collected in this volume represent the state-of-the-art in system test and diagnosis, and the authors are at the leading edge of that science...." From the Preface
This book first provides a comprehensive coverage of state-of-the-art validation solutions based on real-time signal tracing to guarantee the correctness of VLSI circuits. The authors discuss several key challenges in post-silicon validation and provide automated solutions that are systematic and cost-effective. A series of automatic tracing solutions and innovative design for debug (DfD) techniques are described, including techniques for trace signal selection for enhancing visibility of functional errors, a multiplexed signal tracing strategy for improving functional error detection, a tracing solution for debugging electrical errors, an interconnection fabric for increasing data bandwidth and supporting multi-core debug, an interconnection fabric design and optimization technique to increase transfer flexibility and a DfD design and associated tracing solution for improving debug efficiency and expanding tracing window. The solutions presented in this book improve the validation quality of VLSI circuits, and ultimately enable the design and fabrication of reliable electronic devices.
This "must have" reference work for semiconductor professionals and researchers provides a basic understanding of how the most commonly used tools and techniques in silicon-based semiconductors are applied to understanding the root cause of electrical failures in integrated circuits.
Testing Static Random Access Memories covers testing of one of the
important semiconductor memories types; it addresses testing of
static random access memories (SRAMs), both single-port and
multi-port. It contributes to the technical acknowledge needed by
those involved in memory testing, engineers and researchers. The
book begins with outlining the most popular SRAMs architectures.
Then, the description of realistic fault models, based on defect
injection and SPICE simulation, are introduced. Thereafter, high
quality and low cost test patterns, as well as test strategies for
single-port, two-port and any p-port SRAMs are presented, together
with some preliminary test results showing the importance of the
new tests in reducing DPM level. The impact of the port
restrictions (e.g., read-only ports) on the fault models, tests,
and test strategies is also discussed.
The thermal processing of materials ranges from few fem to seconds by Swift Heavy Ion Implantation to about one second using advanced Rapid Thermal Annealing. This book offers after an historical excursus selected contributions on fundamental and applied aspects of thermal processing of classical elemental semiconductors and other advanced materials including nanostructures with novel optoelectronic, magnetic, and superconducting properties. Special emphasis is given on the diffusion and segregation of impurity atoms during thermal treatment. A broad range of examples describes the solid phase and/or liquid phase processing of elemental and compound semiconductors, dielectric composites and organic materials.
Advances in the synthesis of new materials with often complex, nano-scaled structures require increasingly sophisticated experimental techniques that can probe the electronic states, the atomic magnetic moments and the magnetic microstructures responsible for the properties of these materials. At the same time, progress in synchrotron radiation techniques has ensured that these light sources remain a key tool of investigation, e.g. synchrotron radiation sources of the third generation are able to support magnetic imaging on a sub-micrometer scale. With the Sixth Mittelwihr School on Magnetism and Synchrotron Radiation the tradition of teaching the state-of-the-art on modern research developments continues and is expressed through the present set of extensive lectures provided in this volume. While primarily aimed at postgraduate students and newcomers to the field, this volume will also benefit researchers and lecturers actively working in the field.
This book provides students and practicing chip designers with an easy-to-follow yet thorough, introductory treatment of the most promising emerging memories under development in the industry. Focusing on the chip designer rather than the end user, this book offers expanded, up-to-date coverage of emerging memories circuit design. After an introduction on the old solid-state memories and the fundamental limitations soon to be encountered, the working principle and main technology issues of each of the considered technologies (PCRAM, MRAM, FeRAM, ReRAM) are reviewed and a range of topics related to design is explored: the array organization, sensing and writing circuitry, programming algorithms and error correction techniques are reviewed comparing the approach followed and the constraints for each of the technologies considered. Finally the issue of radiation effects on memory devices has been briefly treated. Additionally some considerations are entertained about how emerging memories can find a place in the new memory paradigm required by future electronic systems. This book is an up-to-date and comprehensive introduction for students in courses on memory circuit design or advanced digital courses in VLSI or CMOS circuit design. It also serves as an essential, one-stop resource for academics, researchers and practicing engineers.
This work investigates the energy-level alignment of hybrid inorganic/organic systems (HIOS) comprising ZnO as the major inorganic semiconductor. In addition to offering essential insights, the thesis demonstrates HIOS energy-level alignment tuning within an unprecedented energy range. (Sub)monolayers of organic molecular donors and acceptors are introduced as an interlayer to modify HIOS interface-energy levels. By studying numerous HIOS with varying properties, the author derives generally valid systematic insights into the fundamental processes at work. In addition to molecular pinning levels, he identifies adsorption-induced band bending and gap-state density of states as playing a crucial role in the interlayer-modified energy-level alignment, thus laying the foundation for rationally controlling HIOS interface electronic properties. The thesis also presents quantitative descriptions of many aspects of the processes, opening the door for innovative HIOS interfaces and for future applications of ZnO in electronic devices.
examples are presented. These chapters are intended to introduce the reader to the programs. The program structure and models used will be described only briefly. Since these programs are in the public domain (with the exception of the parasitic simulation programs), the reader is referred to the manuals for more details. In this second edition, the process program SUPREM III has been added to Chapter 2. The device simulation program PISCES has replaced the program SIFCOD in Chapter 3. A three-dimensional parasitics simulator FCAP3 has been added to Chapter 4. It is clear that these programs or other programs with similar capabilities will be indispensible for VLSI/ULSI device developments. Part B of the book presents case studies, where the application of simu lation tools to solve VLSI device design problems is described in detail. The physics of the problems are illustrated with the aid of numerical simulations. Solutions to these problems are presented. Issues in state-of-the-art device development such as drain-induced barrier lowering, trench isolation, hot elec tron effects, device scaling and interconnect parasitics are discussed. In this second edition, two new chapters are added. Chapter 6 presents the methodol ogy and significance of benchmarking simulation programs, in this case the SUPREM III program. Chapter 13 describes a systematic approach to investi gate the sensitivity of device characteristics to process variations, as well as the trade-otIs between different device designs."
Physics of Thin Films is one of the longest running continuing
series in thin film science, consisting of 25 volumes since 1963.
The series contains quality studies of the properties of various
thin films materials and systems. In order to be able to reflect
the development of today's science and to cover all modern aspects
of thin films, the series, starting with Volume 20, has moved
beyond the basic physics of thin films. It now addresses the most
important aspects of both inorganic and organic thin films, in both
their theoretical and their technological aspects.
Transparent conducting materials are key elements in a wide variety of current technologies including flat panel displays, photovoltaics, organic, low-e windows and electrochromics. The needs for new and improved materials is pressing, because the existing materials do not have the performance levels to meet the ever- increasing demand, and because some of the current materials used may not be viable in the future. In addition, the field of transparent conductors has gone through dramatic changes in the last 5-7 years with new materials being identified, new applications and new people in the field. "Handbook of Transparent Conductors" presents transparent conductors in a historical perspective, provides current applications as well as insights into the future of the devices. It is a comprehensive reference, and represents the most current resource on the subject.
This book addresses the design of compliant mechanisms, presenting readers with a good understanding of both the solid mechanics of flexible elements and their configuration design, based on a mechanism-equivalent approach in the framework of screw theory. The book begins with the theoretical background of screw theory, and systematically addresses both the compliance characteristics of flexible elements and their configuration design. The book then covers a broad range of compliant parallel mechanism design topics, from stiffness to constraint decomposition, from conceptual design to dimensional design, and from analysis to synthesis, as well as the large deformation problem; this is followed by both simulations and physical experiments, offering readers a solid foundation and useful tools. Given its scope and the results it presents, the book will certainly benefit and inform future research on the topic. It offers a valuable asset for researchers, developers, engineers and graduate students with an interest in compliant mechanisms, robotics and screw theory.
Particle simulation of semiconductor devices is a rather new field which has started to catch the interest of the world's scientific community. It represents a time-continuous solution of Boltzmann's transport equation, or its quantum mechanical equivalent, and the field equation, without encountering the usual numerical problems associated with the direct solution. The technique is based on first physical principles by following in detail the transport histories of indi vidual particles and gives a profound insight into the physics of semiconductor devices. The method can be applied to devices of any geometrical complexity and material composition. It yields an accurate description of the device, which is not limited by the assumptions made behind the alternative drift diffusion and hydrodynamic models, which represent approximate solutions to the transport equation. While the development of the particle modelling technique has been hampered in the past by the cost of computer time, today this should not be held against using a method which gives a profound physical insight into individual devices and can be used to predict the properties of devices not yet manufactured. Employed in this way it can save the developer much time and large sums of money, both important considerations for the laboratory which wants to keep abreast of the field of device research. Applying it to al ready existing electronic components may lead to novel ideas for their improvement. The Monte Carlo particle simulation technique is applicable to microelectronic components of any arbitrary shape and complexity.
Narrow gap semiconductors obey the general rules of semiconductor science, but often exhibit extreme features of these rules because of the same properties that produce their narrow gaps. Consequently these materials provide sensitive tests of theory, and the opportunity for the design of innovative devices. Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. Device Physics of Narrow Gap Semiconductors, a forthcoming second book, offers descriptions of the materials science and device physics of these unique materials. Topics covered include impurities and defects, recombination mechanisms, surface and interface properties, and the properties of low dimensional systems for infrared applications. This book will help readers to understand not only semiconductor physics and materials science, but also how they relate to advanced opto-electronic devices. The final chapter describes the device physics of photoconductive detectors, photovoltaic infrared detectors, super lattices and quantum wells, infrared lasers, and single photon infrared detectors.
This textbook, based on the authors' class-tested material, is accessible to students at the advanced undergraduate and graduate level in physics and engineering. While its primary function is didactic, this book's comprehensive choice of topics and its clear and authoritative synthesis of ideas make it a useful reference for researchers, device engineers, and course instructors who wish to consolidate their knowledge of this field. The book takes the semi-classical approach where light is treated as a wave in accordance with the classical Maxwell equations, while matter is governed by quantum theory. It begins by introducing the postulates and mathematical framework of quantum theory, followed by the formalism of the density matrix which allows the transition from microscopic (quantum) quantities to macroscopic (classical) ones. Consequently, the equations describing the reaction of matter to the electromagnetic field in the form of polarization, magnetization, and current are derived. These equations (together with the Maxwell equations) form the complete system of equations sufficient to model a wide class of problems surrounding linear and nonlinear interactions of electromagnetic fields with matter. The nonlinear character of the governing equations determines parameters of the steady-state mode of the quantum generator and is also demonstrated in harmonic generation via propagation of laser radiation in various media. The touchstone description of magnetic phenomena will be of interest to scientists who deal with applications of magneto-resonance phenomena in biology and medicine. Other advanced topics covered include electric dipole transitions, magnetic dipole transitions, plasma transitions, and the devices that can be based on these and other electro-optical and nonlinear-optical systems. This textbook features numerous exercises, some of which are investigatory and some of which require computational solutions.
This book primarily covers the fundamental science, synthesis, characterization, optoelectronic properties, and applications of metal oxide nanomaterials. It discusses the basic aspects of synthetic procedures and fabrication technologies, explains the related experimental techniques and also elaborates on the current status of nanostructured oxide materials and related devices. Two major aspects of metal oxide nanostructures - their optical and electrical properties - are described in detail. The first five chapters focus on the optical characteristics of semiconducting materials, especially metal oxides at the nanoscale. The following five chapters discuss the electrical properties observed in metal oxide-based semiconductors and the status quo of device-level developments in a variety of applications such as sensors, transistors, dilute magnetic semiconductors, and dielectric materials. The basic science and mechanism behind the optoelectronic phenomena are explained in detail, to aid readers interested in the structure-property symbiosis in semiconducting nanomaterials. In short, the book offers a valuable reference guide for researchers and academics in the areas of material science and semiconductor technology, especially nanophotonics and electronics.
Monte Carlo simulation is now a well established method for studying semiconductor devices and is particularly well suited to highlighting physical mechanisms and exploring material properties. Not surprisingly, the more completely the material properties are built into the simulation, up to and including the use of a full band structure, the more powerful is the method. Indeed, it is now becoming increasingly clear that phenomena such as reliabil ity related hot-electron effects in MOSFETs cannot be understood satisfac torily without using full band Monte Carlo. The IBM simulator DAMOCLES, therefore, represents a landmark of great significance. DAMOCLES sums up the total of Monte Carlo device modeling experience of the past, and reaches with its capabilities and opportunities into the distant future. This book, therefore, begins with a description of the IBM simulator. The second chapter gives an advanced introduction to the physical basis for Monte Carlo simulations and an outlook on why complex effects such as collisional broadening and intracollisional field effects can be important and how they can be included in the simulations. References to more basic intro the book. The third chapter ductory material can be found throughout describes a typical relationship of Monte Carlo simulations to experimental data and indicates a major difficulty, the vast number of deformation poten tials required to simulate transport throughout the entire Brillouin zone. The fourth chapter addresses possible further extensions of the Monte Carlo approach and subtleties of the electron-electron interaction."
The present book provides recent developments in various in vivo imaging and sensing techniques such as photo acoustics (PA) imaging and microscopy, ultrasound-PA combined modalities, optical coherence tomography (OCT) and micro OCT, Raman and surface enhanced Raman scattering (SERS), Fluorescence lifetime imaging (FLI) techniques and nanoparticle enabled endoscopy etc. There is also a contributing chapter from leading medical instrumentation company on their view of optical imaging techniques in clinical laparoscopic surgery. The UN proclaimed 2015 as the International Year of Light and Light-based Technologies, emphasizing achievements in the optical sciences and their importance to human beings. In this context, this book focusses on the recent advances in biophotonics techniques primarily focused towards translational medicine contributed by thought leaders who have made cutting edge developments in various photonics techniques.
The ELFNET Book on Failure Mechanisms, Testing Methods, and Quality Issues of Lead-Free Solder Interconnects is the work of the European network ELFNET which was founded by the European Commission in the 6th Framework Programme. It brings together contributions from the leading European experts in lead-free soldering. The limited validity of testing methods originating from tin-lead solder was a major point of concern in ELFNET members' discussions. As a result, the network's reliability group decided to bring together the material properties of lead-free solders, as well as the basics of material science, and to discuss their influence on the procedures for accelerated testing. This has led to a matrix of failure mechanisms and their activation and, as a result, to a comprehensive coverage of the scientific background and its applications in reliability testing of lead-free solder joints. The ELFNET Book on Failure Mechanisms, Testing Methods, and Quality Issues of Lead-Free Solder Interconnects is written for scientists, engineers and researchers involved with lead-free electronics.
System-Level Design Techniques for Energy-Efficient Embedded
Systems addresses the development and validation of co-synthesis
techniques that allow an effective design of embedded systems with
low energy dissipation. The book provides an overview of a
system-level co-design flow, illustrating through examples how
system performance is influenced at various steps of the flow
including allocation, mapping, and scheduling. The book places
special emphasis upon system-level co-synthesis techniques for
architectures that contain voltage scalable processors, which can
dynamically trade off between computational performance and power
consumption. Throughout the book, the introduced co-synthesis
techniques, which target both single-mode systems and emerging
multi-mode applications, are applied to numerous benchmarks and
real-life examples including a realistic smart phone.
In this thesis, the author has developed a high-resolution spin-resolved photoemission spectrometer that achieves the world-best energy resolution of 8 meV. The author has designed a new, highly efficient mini Mott detector that has a large electron acceptance angle and an atomically flat gold target to enhance the efficiency of detecting scattered electrons. The author measured the electron and spin structure of Bi thin film grown on a Si(111) surface to study the Rashba effect. Unlike the conventional Rashba splitting, an asymmetric in-plane spin polarization and a tremendous out-of-plane spin component were observed. Moreover, the author found that the spin polarization of Rashba surface states is reduced by decreasing the film thickness, which indicates the considerable interaction of Rashba spin-split states between the surface and Bi/Si interface.
For courses in 8051 Microcontrollers and Embedded Systems The 8051 Microprocessor: A Systems Approach emphasizes the programming and interfacing of the 8051. Using a systematic, step-by-step approach, the text covers various aspects of 8051, including C and Assembly language programming and interfacing. Throughout each chapter, examples, sample programs, and sectional reviews clarify the concepts and offer students an opportunity to learn by doing.
The topics include bonding-based fabrication methods of silicon-on-insulator, photonic crystals, VCSELs, SiGe-based FETs, MEMS together with hybrid integration and laser lift-off. The non-specialist will learn about the basics of wafer bonding and its various application areas, while the researcher in the field will find up-to-date information about this fast-moving area, including relevant patent information. |
You may like...
Metal Halide Perovskites: Synthesis…
Jin Zhong Zhang, Zhiguo Xia, …
Hardcover
R2,525
Discovery Miles 25 250
Perovskites and other framework…
Pierre Saint-Gregoire, Mikhail Smirnov
Hardcover
R2,250
Discovery Miles 22 500
Polyimide for Electronic and Electrical…
Sombel Diaham
Hardcover
|