![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials
This book covers the theoretical background, experimental methods and implementation details to engineer for communication and imaging application, terahertz devices using metamaterials, in mainstream semiconductor foundry processes. This book will provide engineers and physicists an authoritative reference to construct such devices with minimal background. The authors describe the design and construction of electromagnetic (EM) devices for terahertz frequencies (108-1010 cycles/sec) using artificial materials that are a fraction of the wavelength of the incident EM wave, resulting in an effective electric and magnetic properties (permittivity and permeability) that are unavailable in natural materials.
While dealing with the design and operation of ion sources, this book additionally discusses the physics of ion formation of the various elements with different charge states and charge neutralization. Ion selection and beam diagnostics are equally included, and the presentation of the necessary equations and diagrams for the various parameters makes this a useful handbook for ion sources.
The book presents a comprehensive survey of the thermoballistic approach to charge carrier transport in semiconductors. This semi-classical approach, which the authors have developed over the past decade, bridges the gap between the opposing drift-diffusion and ballistic models of carrier transport. While incorporating basic features of the latter two models, the physical concept underlying the thermoballistic approach constitutes a novel, unifying scheme. It is based on the introduction of "ballistic configurations" arising from a random partitioning of the length of a semiconducting sample into ballistic transport intervals. Stochastic averaging of the ballistic carrier currents over the ballistic configurations results in a position-dependent thermoballistic current, which is the key element of the thermoballistic concept and forms the point of departure for the calculation of all relevant transport properties. In the book, the thermoballistic concept and its implementation are developed in great detail and specific examples of interest to current research in semiconductor physics and spintronics are worked out.
In 1987 a major breakthrough occurred in materials science. A new family of materials was discovered that became superconducting above the temperature at which nitrogen gas liquifies, namely, 77 K or -196 DegreesC. Within months of the discovery, a wide variety of experimental techniques were brought to bear in order to measure the properties of these materials and to gain an understanding of why they superconduct at such high temperatures. Among the techniques used were electromagnetic absorption in both the normal and the superconducting states. The measurements enabled the determination of a wide variety of properties, and in some instances led to the observation of new effects not seen by other measu- ments, such as the existence of weak-link microwave absorption at low dc magnetic fields. The number of different properties and the degree of detail that can be obtained from magnetic field- and temperature-dependent studies of electromagnetic abso- tion are not widely appreciated. For example, these measurements can provide information on the band gap, critical fields, the H-T irreversibility line, the amount of trapped flux, and even information about the symmetry of the wave function of the Cooper pairs. It is possible to use low dc magnetic field-induced absorption of microwaves with derivative detection to verify the presence of superconductivity in a matter of minutes, and the measurements are often more straightforward than others. For example, they do not require the physical contact with the sample that is necessary when using four-probe resistivity to detect superconductivity.
This invaluable manual is intended to guide and facilitate human anatomical dissections. It is flexible enough for use in long as well as short courses, and is thus structured in such a way that the dissection of the body can be completed in 110 to 160 hours. Although some medical schools have reduced the amount of dissection, the North American schools have lengthened their courses. The manual can also be used in those courses where only part of the body is dissected and even in the study of prosected material. It can be particularly useful as a link with real anatomy when used together with computerised-anatomy programs; many curricula emphasise that the student should go back and forth between the body and computer programs. The guide is also useful where students do not dissect but merely look at atlases, prosections and models, by providing a link to real, living and variable anatomy.Nowadays many anatomy courses are aimed solely at systems anatomy. Although important as systems are, regions are clinically vital since many more problems concern damage to several systems because the lesions are regional. This is where the guide is of considerable help.There is an introduction for each anatomical region; and for each section to be dissected there is an overview, a dissection schedule which guides the student through a set of instructions, a summary and a list of objectives that are clinically important. The terminology used is the latest.This manual is suitable for medical, dental, osteopathy and chiropody schools as well as human biology and science programs that include dissection in their undergraduate gross anatomy course. It is also of value for advanced knowledge of anatomy for surgery as required by further qualifications and in relation to specialised training involving interpretation of normal anatomy in non-invasive imaging of anatomy for clinical diagnosis, practice of clinical (surgical) skills on cadaveric material, and in discussions about clinical problems.
Physical properties and models of electronic structure are analyzed for a new class of high-TC superconductors which belong to iron-based layered compounds. Despite their variable chemical composition and differences in the crystal structure, these compounds possess similar physical characteristics, due to electron carriers in the FeAs layers and the interaction of these carriers with fluctuations of the magnetic order. A tremendous interest towards these materials is explained by the prospects of their practical use. In this monograph, a full picture of the formation of physical properties of these materials, in the context of existing theory models and electron structure studies, is given. The book is aimed at a broad circle of readers: physicists who study electronic properties of the FeAs compounds, chemists who synthesize them and specialists in the field of electronic structure calculations in solids. It is helpful not only to researchers active in the fields of superconductivity and magnetism, but also for graduate and postgraduate students and all those who would like to get acquaintained with this vivid area of the materials science.
This book presents written versions of selected invited lectures from the spring meeting of the Arbeitskreis Festkorperphysik of the Deutsche Physikalische Gesellschaft which was held from 27 to 31 March 2006 in Dresden, Germany. Many topical talks given at the numerous symposia are included. Most of these were organized collaboratively by several of the divisions of the Arbeitskreis. The book presents, to some extent, the status of the field of solid-state physics in 2006 not only in Germany but also internationally.
"Molecular Modeling and Multiscaling Issues for Electronic Material
Applications" provides a snapshot on the progression of molecular
modeling in the electronics industry and how molecular modeling is
currently being used to understand material performance to solve
relevant issues in this field. This book is intended to introduce
the reader to the evolving role of molecular modeling, especially
seen through the eyes of the IEEE community involved in material
modeling for electronic applications. Part I presents the role that
quantum mechanics can play in performance prediction, such as
properties dependent upon electronic structure, but also shows
examples how molecular models may be used in performance
diagnostics, especially when chemistry is part of the performance
issue. Part II gives examples of large-scale atomistic methods in
material failure and shows several examples of transitioning
between grain boundary simulations (on the atomistic level)and
large-scale models including an example of the use of
quasi-continuum methods that are being used to address multiscaling
issues. Part III is a more specific look at molecular dynamics in
the determination of the thermal conductivity of carbon-nanotubes.
Part IV covers the many aspects of molecular modeling needed to
understand the relationship between the molecular structure and
mechanical performance of materials. Finally, Part V discusses the
transitional topic of multiscale modeling and recent developments
to reach the submicronscale using mesoscale models, including
examples of direct scaling and parameterization from the atomistic
to the coarse-grained particle level.
This book is concerned with polymeric hydrogels, which are considered as one of the most promising types of new polymer-based materials. Each chapter in this book describes a selected class of polymeric hydrogels, such as superabsorbent hybrid nanohydrogels, conducting polymer hydrogels, polysaccharide-based or protein-based hydrogels, or gels based on synthetic polymers. In this way, the book also addresses some of the fascinating properties and applications of polymeric hydrogels: they are three-dimensional, hydrophilic, polymeric networks that can absorb, swell and retain large quantities of water or aqueous fluids. In combination with metal nanoparticles, nanofibrils or nanowhiskers, which may be embedded in the gels, they find widespread applications, ranging from agriculture, and waste water treatment, over electronics, to pharmaceutical and biomedical applications. Applications mentioned in this book include electro sensors, capacitors, electromechanical actuators, and even artificial muscles.
This text presents papers given at a discussion meeting of The Royal Society, held in July 1992, concerning thin film diamond. Traditionally, commercial diamond synthesis was almost entirely by the high-pressure, high-temperature technique, but in recent years, low-pressure diamond synthesis has attracted world-wide interest due to the possible use of diamond films in commercial applications. These papers review these low-pressure diamond synthesis techniques. An historical overview of the low-pressure growth techniques and a description of diamond and crystal morphology is given, followed by a discussion of the kinetics and gas phase chemistry involved in thin film growth. Peter Bachmann presents a review of the current deposition techniques, and summarizes the results of various deposition conditions to show that diamond growth is only possible in a narrow range of gas compositions. Other chapters discuss the electronic, optical, thermal and mechanical properties of thin diamond films as well as the electronic structure, deposition techniques and applications of diamond-like carbon (DLC) films. The final chapter discusses the various thermal and optical infra-red and X-ray applications of diamond thin films. Researchers in materials, physics and mechanical engineering should find this text a timely review of a rapidly advancing field, and it should provide practising engineers in the electronic and manufacturing industries with a useful overview of the field.
Reviewing the development of optical fibre lasers and amplifiers over the past few years, this book is a compilation of chapters written by several contributors. Chapter 1 presents an overview and an historical introduction to the field. Chapter 2 is theoretical and introduces the concepts of energy levels and of lasing. Chapter 3 then discusses the fabrication of rare-earth doped optical fibres whilst chapter 4 covers the spectroscopy of rare-earth dopants in these fibres. Chapter 5 emphasizes the practical aspects of the laser amplifier. Chapter 6 moves on to the operation of erbium amplifiers in optical systems and a comparison is made here with other alternatives amplifying devices. Chapter 7 reviews work on fibre laser oscillators made in silica fibre, while chapter 8 covers similar work using fluoride glass fibres, an alternative glass host. Chapter 9 describes Q-switching and mode-locking in fibre lasers, and finally chapter 10 examines future prospects for these devices and discusses potential developments such as distributed fibre amplifiers, soliton propagation and the general use of fibre lasers in optical sensors.
"Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials "describes physical, optical and spectroscopic properties of the emerging class of nanocomposites formed from carbon nanotubes (CNTs) interfacing with organic and inorganic materials. The three main chapters detail novel trends in photophysics related to the interaction of light with various carbon nanotube composites from relatively simple CNT/small molecule assemblies to complex hybrids such as CNT/Si and CNT/DNA nanostructures. The latest experimental results are followed up with detailed discussions and scientific and technological perspectives to provide a through coverage of major topics including: -Light harvesting, energy conversion, photoinduced charge separation and transport in CNT based nanohybrids -CNT/polymer composites exhibiting photoactuation; and -Optical spectroscopy and structure of CNT/DNA complexes. Including original data and a short review of recent research, "Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials" makes this emerging field of photophysics and its applications available to academics and professionals working with carbon nanotube composites in fundamental and applied fields
Covers the statistical analysis and optimization issues arising due to increased process variations in current technologies. Comprises a valuable reference for statistical analysis and optimization techniques in current and future VLSI design for CAD-Tool developers and for researchers interested in starting work in this very active area of research. Written by author who lead much research in this area who provide novel ideas and approaches to handle the addressed issues
The book develops a comprehensive understanding of the surface impedance of the oxide high-temperature superconductors in comparison with the conventional superconductor Nb3Sn. Linear and nonlinear microwave responses are treated separately, both in terms of models, theories or numerical approaches and in terms of experimental results. The theoretical treatment connects fundamental aspects of superconductivity to the specific high-frequency properties. The experimental data review the state of the art, as reported by many international groups. The book describes further the main features of appropriate preparation, handling, mounting, and refrigeration techniques, and finally discusses possible applications in passive and active microwave devices.
This book provides an in-depth, comprehensive and up-to-date coverage of the subject of plasma charging damage in modern VLSI circuit manufacturing. It is written for beginners as well as practitioners. For beginners, this book presents an easy-to-follow, unified explanation of various charging-damage phenomena, the goal being to provide them with a solid foundation for taking on real damage problems encountered in VLSI manufacturing. For practitioners, it can help bridge the gap between disciplines by providing all of the necessary background materials in one place.Drawing on the author's wide range of experience in plasma science, processing technologies, device physics and reliability physics, the text includes information on: - plasma and mechanisms of plasma damage;- wear-out and breakdown of thin gate-oxides;- the impact of processing equipment on damage;- methods of damage measurement;- damage management; - gate-oxide scaling.
The tremendous impact of electronic devices on our lives is the result of continuous improvements of the billions of nanoelectronic components inside integrated circuits (ICs). However, ultra-scaled semiconductor devices require nanometer control of the many parameters essential for their fabrication. Through the years, this created a strong alliance between microscopy techniques and IC manufacturing. This book reviews the latest progress in IC devices, with emphasis on the impact of electrical atomic force microscopy (AFM) techniques for their development. The operation principles of many techniques are introduced, and the associated metrology challenges described. Blending the expertise of industrial specialists and academic researchers, the chapters are dedicated to various AFM methods and their impact on the development of emerging nanoelectronic devices. The goal is to introduce the major electrical AFM methods, following the journey that has seen our lives changed by the advent of ubiquitous nanoelectronics devices, and has extended our capability to sense matter on a scale previously inaccessible.
We have reached the double conclusion: that invention is choice, that this choice is imperatively governed by the sense of scientific beauty. Hadamard (1945), Princeton University Press, by permission. The great majority of all sources and amplifiers of microwave energy, and all devices for receiving or detecting microwaves, use a semiconductor active element. The development of microwave semiconductor devices, de scribed in this book, has proceeded from the simpler, two-terminal, devices such as GUNN or IMPATT devices, which originated in the 1960s, to the sophisticated monolithic circuit MESFET three-terminal active elements, of the 1980s and 1990s. The microwave field has experienced a renais sance in electrical engineering departments in the last few years, and much of this growth has been associated with microwave semiconductor devices. The University of Massachusetts has recently developed a well recognized program in microwave engineering. Much of the momentum for this pro gram has been provided by interaction with industrial companies, and the influx of a large number of industry-supported students. This program had a need for a course in microwave semiconductor devices, which covered the physical aspects, as well as the aspects of interest to the engineer who incorporates such devices in his designs. It was also felt that it would be im portant to introduce the most recently developed devices (HFETs, HBTs, and other advanced devices) as early as possible."
Traditionally, Computer Aided Design (CAD) tools have been used to create the nominal design of an integrated circuit (IC), such that the circuit nominal response meets the desired performance specifications. In reality, however, due to the disturbances ofthe IC manufacturing process, the actual performancesof the mass produced chips are different than those for the nominal design. Even if the manufacturing process were tightly controlled, so that there were little variations across the chips manufactured, the environmentalchanges (e. g. those oftemperature, supply voltages, etc. ) would alsomakethe circuit performances vary during the circuit life span. Process-related performance variations may lead to low manufacturing yield, and unacceptable product quality. For these reasons, statistical circuit design techniques are required to design the circuit parameters, taking the statistical process variations into account. This book deals with some theoretical and practical aspects of IC statistical design, and emphasizes how they differ from those for discrete circuits. It de scribes a spectrum of different statistical design problems, such as parametric yield optimization, generalized on-target design, variability minimization, per formance tunning, and worst-case design. The main emphasis of the presen tation is placed on the principles and practical solutions for performance vari ability minimization. It is hoped that the book may serve as an introductory reference material for various groups of IC designers, and the methodologies described will help them enhance the circuit quality and manufacturability. The book containsseven chapters."
Recent years have seen silicon integrated circuits enter into an increasing number of technical and consumer applications, until they now affect everyday life, as well as technical areas. Polycrystalline silicon has been an important component of silicon technology for nearly two decades, being used first in MOS integrated circuits and now becoming pervasive in bipolar circuits, as well. During this time a great deal of informa tion has been published about polysilicon. A wide range of deposition conditions has been used to form films exhibiting markedly different properties. Seemingly contradictory results can often be explained by considering the details of the structure formed. This monograph is an attempt to synthesize much of the available knowledge about polysilicon. It represents an effort to interrelate the deposition, properties, and applications of polysilicon so that it can be used most effectively to enhance device and integrated-circuit perfor mance. As device performance improves, however, some of the proper ties of polysilicon are beginning to restrict the overall performance of integrated circuits, and the basic limitations of the properties of polysili con also need to be better understood to minimize potential degradation of circuit behavior."
Authored by leading experts from around the world, the three-volume Handbook of Nanostructured Thin Films and Coatings gives scientific researchers and product engineers a resource as dynamic and flexible as the field itself. The first two volumes cover the latest research and application of the mechanical and functional properties of thin films and coatings, while the third volume explores the cutting-edge organic nanostructured devices used to produce clean energy. This third volume, Organic Nanostructured Thin Film Devices and Coatings for Clean Energy, addresses various aspects of the processing and properties of organic thin films, devices, and coatings for clean energy applications. Topics covered include:
A complete resource, this handbook provides the detailed explanations that newcomers need, as well as the latest cutting-edge research and data for experts. Covering a wide range of mechanical and functional technologies, including those used in clean energy, these books also feature figures, tables, and images that will aid research and help professionals acquire and maintain a solid grasp of this burgeoning field. The Handbook of Nanostructured Thin Films and Coatings is composed of this volume and two others: Nanostructured Thin Films and Coatings, Functional Properties Nanostructured Thin Films and Coatings, Mechanical Properties
This book offers a comprehensive overview of the development, current state, and future prospects of wide bandgap semiconductor materials and related optoelectronics devices. With 901 references, 333 figures and 21 tables, this book will serve as a one-stop source of knowledge on wide bandgap semiconductors and related optoelectronics devices.
An international team of experts describes the optical and electronic properties of semiconductors and semiconductor nanostructures at picosecond and femtosecond time scales. The contributions cover the latest research on a wide range of topics. In particular they include novel experimental techniques for studying and characterizing nanostructure materials. The contributions are written in a tutorial way so that not only researchers in the field but also researchers and graduate students outside the field can benefit.
This book covers different aspects of the physics of iron-based superconductors ranging from the theoretical, the numerical and computational to the experimental ones. It starts from the basic theory modeling many-body physics in Fe-superconductors and other multi-orbital materials and reaches up to the magnetic and Cooper pair fluctuations and nematic order. Finally, it offers a comprehensive overview of the most recent advancements in the experimental investigations of iron based superconductors.
This book describes the characterization of liquid crystal materials at microwave frequencies and the usage of these materials in reconfigurable planar antennas and in their electrical tunable components. It reports for the first time the realization of a two-dimensional electronic beam steering antenna and polarization agile planar antennas with liquid crystal display technology. It gives a detailed description of all the theoretical analyses, modeling and design methods that were involved in the realization of these devices as well as their validation using measurement of demonstrative prototypes. This book also shows that low profile, low cost, high gain, electronic beam steering and polarization agile antennas can be fabricated in larger sizes by using existing automated liquid crystal display manufacturing techniques. The innovative ideas and method described in this work represent a considerable advancement in the field of electronically reconfigurable antennas based on liquid crystal technology and are expected to draw significant interest in the future. Such antennas may become important, for example, in mobile terminals integrated into the body of laptops (in the cover) or of automobiles (in the rooftop), ships or boats, for which flat, low-profile and low-cost antennas are required.
Semiconductor materials have been studied intensively since the birth of silicon technology more than 50 years ago. The ability to physically and chemically t- lor their properties with precision is the key factor responsible for the electronic revolution in our society over the past few decades. Semiconductor material s- tems (like silicon and GaAs-related materials) have now matured and found well established applications in electronics, optoelectronics, and several other ?elds. Other materials such as III-Nitrides were developed later, in response to needs that the above mentioned semiconductors were unable to ful?ll. The properties of I- nitrides (AlN, GaN InN, and related alloy systems) make them an excellent choice for ef?cient light emitters in the visible as well as the UV region, UV detectors, and for a variety of electronic device such as high frequency unipolar power devices. There was a major upsurgein the research of the GaN material system around1970. |
![]() ![]() You may like...
Anthropology and Climate Change - From…
Susan A. Crate, Mark Nuttall
Hardcover
R4,317
Discovery Miles 43 170
Climate Change in the South Pacific…
Alexander Gillespie, William C.G. Burns
Hardcover
R4,485
Discovery Miles 44 850
Informal Institutions in Policy…
Anna Korppoo, Iselin Stensdal, …
Hardcover
R2,730
Discovery Miles 27 300
Integrated Drought Management, Two…
Vijay P. Singh, Deepak Jhajharia, …
Hardcover
R10,286
Discovery Miles 102 860
Debating Climate Ethics
Stephen M. Gardiner, David A. Weisbach
Hardcover
R3,819
Discovery Miles 38 190
|