![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials
"System level testing is becoming increasingly important. It is driven by the incessant march of complexity ... which is forcing us to renew our thinking on the processes and procedures that we apply to test and diagnosis of systems. In fact, the complexity defines the system itself which, for our purposes, is Aany aggregation of related elements that together form an entity of sufficient complexity for which it is impractical to treat all of the elements at the lowest level of detail . System approaches embody the partitioning of problems into smaller inter-related subsystems that will be solved together. Thus, words like hierarchical, dependence, inference, model, and partitioning are frequent throughout this text. Each of the authors deals with the complexity issue in a similar fashion, but the real value in a collected work such as this is in the subtle differences that may lead to synthesized approaches that allow even more progress. The works included in this volume are an outgrowth of the 2nd International Workshop on System Test and Diagnosis held in Alexandria, Virginia in April 1998. The first such workshop was held in Freiburg, Germany, six years earlier. In the current workshop nearly 50 experts from around the world struggled over issues concerning the subject... In this volume, a select group of workshop participants was invited to provide a chapter that expanded their workshop presentations and incorporated their workshop interactions... While we have attempted to present the work as one volume and requested some revision to the work, the content of the individual chapters was not edited significantly. Consequently, you will see different approaches to solving the sameproblems and occasional disagreement between authors as to definitions or the importance of factors. ... The works collected in this volume represent the state-of-the-art in system test and diagnosis, and the authors are at the leading edge of that science...." From the Preface
In modern electoral processes, Information and Communication Technologies play a crucial role, whether used in voter registration, ballot casting, or processing of results. Securing these systems is a necessary step in ensuring the fairness of the democratic process. Design, Development, and Use of Secure Electronic Voting Systems analyzes current research on the integration of modern technologies with traditional democratic systems, providing a framework for designing and deploying electronic voting systems in any context or society. Stakeholders, researchers, architects, designers, and scholars interested in the use of electronic systems in government processes will use this book to gain a broader understanding of some of the latest advances in this emerging field.
This book first provides a comprehensive coverage of state-of-the-art validation solutions based on real-time signal tracing to guarantee the correctness of VLSI circuits. The authors discuss several key challenges in post-silicon validation and provide automated solutions that are systematic and cost-effective. A series of automatic tracing solutions and innovative design for debug (DfD) techniques are described, including techniques for trace signal selection for enhancing visibility of functional errors, a multiplexed signal tracing strategy for improving functional error detection, a tracing solution for debugging electrical errors, an interconnection fabric for increasing data bandwidth and supporting multi-core debug, an interconnection fabric design and optimization technique to increase transfer flexibility and a DfD design and associated tracing solution for improving debug efficiency and expanding tracing window. The solutions presented in this book improve the validation quality of VLSI circuits, and ultimately enable the design and fabrication of reliable electronic devices.
Metamaterials are artificially designed materials engineered to acquire their properties by their specific structure rather than their composition. They are considered a major scientific breakthrough and have attracted enormous attention over the past decade. The major challenge in obtaining an optical metamaterial active at visible frequencies is the fabrication of complex continuous metallic structures with nano metric features. This thesis presents the fabrication and characterization of optical metamaterials made by block copolymer self assembly. This approach allows fabrication of an intriguing and complex continuous 3D architecture called a gyroid, which is replicated into active plasmonic materials such as gold. The optical properties endowed by this particular gyroid geometry include reduction of plasma frequency, extraordinarily enhanced optical transmission, and a predicted negative refractive index. To date, this is the 3D optical metamaterial with the smallest features ever made.
Advances in the synthesis of new materials with often complex, nano-scaled structures require increasingly sophisticated experimental techniques that can probe the electronic states, the atomic magnetic moments and the magnetic microstructures responsible for the properties of these materials. At the same time, progress in synchrotron radiation techniques has ensured that these light sources remain a key tool of investigation, e.g. synchrotron radiation sources of the third generation are able to support magnetic imaging on a sub-micrometer scale. With the Sixth Mittelwihr School on Magnetism and Synchrotron Radiation the tradition of teaching the state-of-the-art on modern research developments continues and is expressed through the present set of extensive lectures provided in this volume. While primarily aimed at postgraduate students and newcomers to the field, this volume will also benefit researchers and lecturers actively working in the field.
examples are presented. These chapters are intended to introduce the reader to the programs. The program structure and models used will be described only briefly. Since these programs are in the public domain (with the exception of the parasitic simulation programs), the reader is referred to the manuals for more details. In this second edition, the process program SUPREM III has been added to Chapter 2. The device simulation program PISCES has replaced the program SIFCOD in Chapter 3. A three-dimensional parasitics simulator FCAP3 has been added to Chapter 4. It is clear that these programs or other programs with similar capabilities will be indispensible for VLSI/ULSI device developments. Part B of the book presents case studies, where the application of simu lation tools to solve VLSI device design problems is described in detail. The physics of the problems are illustrated with the aid of numerical simulations. Solutions to these problems are presented. Issues in state-of-the-art device development such as drain-induced barrier lowering, trench isolation, hot elec tron effects, device scaling and interconnect parasitics are discussed. In this second edition, two new chapters are added. Chapter 6 presents the methodol ogy and significance of benchmarking simulation programs, in this case the SUPREM III program. Chapter 13 describes a systematic approach to investi gate the sensitivity of device characteristics to process variations, as well as the trade-otIs between different device designs."
Particle simulation of semiconductor devices is a rather new field which has started to catch the interest of the world's scientific community. It represents a time-continuous solution of Boltzmann's transport equation, or its quantum mechanical equivalent, and the field equation, without encountering the usual numerical problems associated with the direct solution. The technique is based on first physical principles by following in detail the transport histories of indi vidual particles and gives a profound insight into the physics of semiconductor devices. The method can be applied to devices of any geometrical complexity and material composition. It yields an accurate description of the device, which is not limited by the assumptions made behind the alternative drift diffusion and hydrodynamic models, which represent approximate solutions to the transport equation. While the development of the particle modelling technique has been hampered in the past by the cost of computer time, today this should not be held against using a method which gives a profound physical insight into individual devices and can be used to predict the properties of devices not yet manufactured. Employed in this way it can save the developer much time and large sums of money, both important considerations for the laboratory which wants to keep abreast of the field of device research. Applying it to al ready existing electronic components may lead to novel ideas for their improvement. The Monte Carlo particle simulation technique is applicable to microelectronic components of any arbitrary shape and complexity.
Testing Static Random Access Memories covers testing of one of the
important semiconductor memories types; it addresses testing of
static random access memories (SRAMs), both single-port and
multi-port. It contributes to the technical acknowledge needed by
those involved in memory testing, engineers and researchers. The
book begins with outlining the most popular SRAMs architectures.
Then, the description of realistic fault models, based on defect
injection and SPICE simulation, are introduced. Thereafter, high
quality and low cost test patterns, as well as test strategies for
single-port, two-port and any p-port SRAMs are presented, together
with some preliminary test results showing the importance of the
new tests in reducing DPM level. The impact of the port
restrictions (e.g., read-only ports) on the fault models, tests,
and test strategies is also discussed.
Narrow gap semiconductors obey the general rules of semiconductor science, but often exhibit extreme features of these rules because of the same properties that produce their narrow gaps. Consequently these materials provide sensitive tests of theory, and the opportunity for the design of innovative devices. Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. Device Physics of Narrow Gap Semiconductors, a forthcoming second book, offers descriptions of the materials science and device physics of these unique materials. Topics covered include impurities and defects, recombination mechanisms, surface and interface properties, and the properties of low dimensional systems for infrared applications. This book will help readers to understand not only semiconductor physics and materials science, but also how they relate to advanced opto-electronic devices. The final chapter describes the device physics of photoconductive detectors, photovoltaic infrared detectors, super lattices and quantum wells, infrared lasers, and single photon infrared detectors.
This book provides students and practicing chip designers with an easy-to-follow yet thorough, introductory treatment of the most promising emerging memories under development in the industry. Focusing on the chip designer rather than the end user, this book offers expanded, up-to-date coverage of emerging memories circuit design. After an introduction on the old solid-state memories and the fundamental limitations soon to be encountered, the working principle and main technology issues of each of the considered technologies (PCRAM, MRAM, FeRAM, ReRAM) are reviewed and a range of topics related to design is explored: the array organization, sensing and writing circuitry, programming algorithms and error correction techniques are reviewed comparing the approach followed and the constraints for each of the technologies considered. Finally the issue of radiation effects on memory devices has been briefly treated. Additionally some considerations are entertained about how emerging memories can find a place in the new memory paradigm required by future electronic systems. This book is an up-to-date and comprehensive introduction for students in courses on memory circuit design or advanced digital courses in VLSI or CMOS circuit design. It also serves as an essential, one-stop resource for academics, researchers and practicing engineers.
Monte Carlo simulation is now a well established method for studying semiconductor devices and is particularly well suited to highlighting physical mechanisms and exploring material properties. Not surprisingly, the more completely the material properties are built into the simulation, up to and including the use of a full band structure, the more powerful is the method. Indeed, it is now becoming increasingly clear that phenomena such as reliabil ity related hot-electron effects in MOSFETs cannot be understood satisfac torily without using full band Monte Carlo. The IBM simulator DAMOCLES, therefore, represents a landmark of great significance. DAMOCLES sums up the total of Monte Carlo device modeling experience of the past, and reaches with its capabilities and opportunities into the distant future. This book, therefore, begins with a description of the IBM simulator. The second chapter gives an advanced introduction to the physical basis for Monte Carlo simulations and an outlook on why complex effects such as collisional broadening and intracollisional field effects can be important and how they can be included in the simulations. References to more basic intro the book. The third chapter ductory material can be found throughout describes a typical relationship of Monte Carlo simulations to experimental data and indicates a major difficulty, the vast number of deformation poten tials required to simulate transport throughout the entire Brillouin zone. The fourth chapter addresses possible further extensions of the Monte Carlo approach and subtleties of the electron-electron interaction."
System-Level Design Techniques for Energy-Efficient Embedded
Systems addresses the development and validation of co-synthesis
techniques that allow an effective design of embedded systems with
low energy dissipation. The book provides an overview of a
system-level co-design flow, illustrating through examples how
system performance is influenced at various steps of the flow
including allocation, mapping, and scheduling. The book places
special emphasis upon system-level co-synthesis techniques for
architectures that contain voltage scalable processors, which can
dynamically trade off between computational performance and power
consumption. Throughout the book, the introduced co-synthesis
techniques, which target both single-mode systems and emerging
multi-mode applications, are applied to numerous benchmarks and
real-life examples including a realistic smart phone.
The topics include bonding-based fabrication methods of silicon-on-insulator, photonic crystals, VCSELs, SiGe-based FETs, MEMS together with hybrid integration and laser lift-off. The non-specialist will learn about the basics of wafer bonding and its various application areas, while the researcher in the field will find up-to-date information about this fast-moving area, including relevant patent information.
The present book provides recent developments in various in vivo imaging and sensing techniques such as photo acoustics (PA) imaging and microscopy, ultrasound-PA combined modalities, optical coherence tomography (OCT) and micro OCT, Raman and surface enhanced Raman scattering (SERS), Fluorescence lifetime imaging (FLI) techniques and nanoparticle enabled endoscopy etc. There is also a contributing chapter from leading medical instrumentation company on their view of optical imaging techniques in clinical laparoscopic surgery. The UN proclaimed 2015 as the International Year of Light and Light-based Technologies, emphasizing achievements in the optical sciences and their importance to human beings. In this context, this book focusses on the recent advances in biophotonics techniques primarily focused towards translational medicine contributed by thought leaders who have made cutting edge developments in various photonics techniques.
Narrow Gap II-VI Compounds for Optoelectronic and Electromagnetic Applications will enable readers to gain an insight into this extremely important area of electronic materials activity. Specialists in the field will benefit from its wide-ranging and topical coverage of the subject. At the same time, each of the chapters covers the basic principles associated with the topic concerned and includes references for further study and so will be suitable for advanced graduate courses. Narrow Gap II-VI Compounds for Optoelectronic and Electromagnetic Applications is organised in three main sections. The first covers the growth of materials from the earliest, though still used, bulk techniques, through to the more recent epitaxial techniques, based on both liquid and gas phases, and includes the exciting new area of low dimensional solids and the novel concepts which arise from them. The second section discusses the properties of the materials which make them useful in optical, transport, doping, defects, diffusion and structural applications, and the interfacial and surface effects. In addition, there is a separate chapter on dilute magnetic semiconductors and their unique and fascinating properties. Finally, there is a devices section which encompasses the major fields of infrared detection and emission, by several device types, and the expanding areas of solar cell production and room temperature detection of X-rays and gamma-rays.
This book is devoted to logic synthesis and design techniques for asynchronous circuits. It uses the mathematical theory of Petri Nets and asynchronous automata to develop practical algorithms implemented in a public domain CAD tool. Asynchronous circuits have so far been designed mostly by hand, and are thus much less common than their synchronous counterparts, which have enjoyed a high level of design automation since the mid-1970s. Asynchronous circuits, on the other hand, can be very useful to tackle clock distribution, modularity, power dissipation and electro-magnetic interference in digital integrated circuits. This book provides the foundation needed for CAD-assisted design of such circuits, and can also be used as the basis for a graduate course on logic design.
The first edition of this book provided an introduction to the many static and dynamic features of magnetic flux structures in what are now called classical or low-temperature superconductors. It went out of print not long after the discovery of high-temperature superconductors in 1986 by J.G. Bednorz and K.A. Miiller, a discovery which resulted worldwide in an explosive growth of research and development in the field of superconductivity. Because of this upsurge of activities, a strong demand for this book clearly continued. Since the contents of the fourteen chapters of the first edition are still valid and continue to represent a useful introduction into the various subjects, it was felt that a reprinting of these chapters in this second edition would be highly attractive. In this way, the reader is also able to trace the earlier scienti fic developments, themselves constituting important ideas sometimes forgot ten by the new community dealing with high-temperature superconductivity. However, because of the exciting and important recent progress in the field of high-temperature superconductivity, an extensive chapter has been added in this second edition. It provides a summary of the new developments and a discussion of the highlights. Here keywords such as vortex matter, vortex imaging, and half-integer magnetic flux quanta describe surprising new issues."
Microcantilevers for Atomic Force Microscope Data Storage describes a research collaboration between IBM Almaden and Stanford University in which a new mass data storage technology was evaluated. This technology is based on the use of heated cantilevers to form submicron indentations on a polycarbonate surface, and piezoresistive cantilevers to read those indentations. Microcantilevers for Atomic Force Microscope Data Storage describes how silicon micromachined cantilevers can be used for high-density topographic data storage on a simple substrate such as polycarbonate. The cantilevers can be made to incorporate resistive heaters (for thermal writing) or piezoresistive deflection sensors (for data readback). The primary audience for Microcantilevers for Atomic Force Microscope Data Storage is industrial and academic workers in the microelectromechanical systems (MEMS) area. It will also be of interest to researchers in the data storage industry who are investigating future storage technologies.
The ELFNET Book on Failure Mechanisms, Testing Methods, and Quality Issues of Lead-Free Solder Interconnects is the work of the European network ELFNET which was founded by the European Commission in the 6th Framework Programme. It brings together contributions from the leading European experts in lead-free soldering. The limited validity of testing methods originating from tin-lead solder was a major point of concern in ELFNET members' discussions. As a result, the network's reliability group decided to bring together the material properties of lead-free solders, as well as the basics of material science, and to discuss their influence on the procedures for accelerated testing. This has led to a matrix of failure mechanisms and their activation and, as a result, to a comprehensive coverage of the scientific background and its applications in reliability testing of lead-free solder joints. The ELFNET Book on Failure Mechanisms, Testing Methods, and Quality Issues of Lead-Free Solder Interconnects is written for scientists, engineers and researchers involved with lead-free electronics.
The goal of this book is to bring together into one accessible text the fundamentals of the many disciplines needed by today's engineer working in the field of microelectromechanical systems (MEMS). The subject matter is wide-ranging: microfabrication, mechanics, heat flow, electronics, noise, and dynamics of systems, with and without feedback. Because it is very difficult to enunciate principles of good design' in the abstract, the book is organized around a set of Case Studies that are based on real products, or, where appropriately well-documented products could not be found, on thoroughly published prototype work. The Case Studies were selected to sample a multidimensional space: different manufacturing and fabrication methods, different device applications, and different physical effects used for transduction. The Case Study subjects are: the design and packaging of a piezoresistive pressure sensor, a capacitively-sensed accelerometer, a quartz piezoelectrically-driven and sensed rate gyroscope, two electrostatically-actuated optical projection displays, two microsystems for the amplification of DNA, and a catalytic sensor for combustible gases. This book is used for a graduate course in Design and Fabrication of Microelectromechanical Devices (MEMS)' at the Massachusetts Institute of Technology. It is appropriate for textbook use by senior/graduate courses in MEMS, and will be a useful reference for the active MEMS professional. Each chapter is supplemented with homework problems and suggested related reading. In addition, the book is supported by a web site that will include additional homework exercises, suggested design problems and related teaching materials, and software usedin the textbook examples and homework problems.
Arranged in a format that follows the industry-common ASIC physical design flow, Physical Design Essentials begins with general concepts of an ASIC library, then examines floorplanning, placement, routing, verification, and finally, testing. Among the topics covered are Basic standard cell design, transistor-sizing, and layout styles; Linear, non-linear, and polynomial characterization; Physical design constraints and floorplanning styles; Algorithms used for placement; Clock Tree Synthesis; Parasitic extraction; Electronic Testing, and many more.
For emerging energy saving technologies superconducting materials with superior performance are needed. Such materials can be developed by manipulating the "elementary building blocks" through nanostructuring. For superconductivity the "elementary blocks" are Cooper pair and fluxon (vortex). This book presents new ways how to modify superconductivity and vortex matter through nanostructuring and the use of nanoscale magnetic templates. The basic nano-effects, vortex and vortex-antivortex patterns, vortex dynamics, Josephson phenomena, critical currents, and interplay between superconductivity and ferromagnetism at the nanoscale are discussed. Potential applications of nanostructured superconductors are also presented in the book.
Laser diodes represent a key element in the emerging field of opto electronics which includes, for example, optical communication, optical sensors or optical disc systems. For all these applications, information is either transmitted, stored or read out. The performance of these systems depends to a great deal on the performance of the laser diode with regard to its modulation and noise characteristics. Since the modulation and noise characteristics of laser diodes are of vital importance for optoelectronic systems, the need for a book arises that concentrates on this subject. This book thus closes the gap between books on the device physics of semiconductor lasers and books on system design. Complementary to the specific topics concerning modulation and noise, the first part of this book reviews the basic laser characteristics, so that even a reader without detailed knowledge of laser diodes may follow the text. In order to understand the book, the reader should have a basic knowledge of electronics, semiconductor physics and optical communica tions. The work is primarily written for the engineer or scientist working in the field of optoelectronics; however, since the book is self-contained and since it contains a lot of numerical examples, it may serve as a textbook for graduate students. In the field of laser diode modulation and noise a vast amount has been published during recent years. Even though the book contains more than 600 references, only a small part of the existing literature is included."
The key element of any fluorescence sensing or imaging technology is the fluorescence reporter, which transforms the information on molecular interactions and dynamics into measurable signals of fluorescence emission. This book, written by a team of frontline researchers, demonstrates the broad field of applications of fluorescence reporters, starting from nanoscopic properties of materials, such as self-assembled thin films, polymers and ionic liquids, through biological macromolecules and further to living cell, tissue and body imaging. Basic information on obtaining and interpreting experimental data is presented and recent progress in these practically important areas is highlighted. The book is addressed to a broad interdisciplinary audience.
This work investigates the energy-level alignment of hybrid inorganic/organic systems (HIOS) comprising ZnO as the major inorganic semiconductor. In addition to offering essential insights, the thesis demonstrates HIOS energy-level alignment tuning within an unprecedented energy range. (Sub)monolayers of organic molecular donors and acceptors are introduced as an interlayer to modify HIOS interface-energy levels. By studying numerous HIOS with varying properties, the author derives generally valid systematic insights into the fundamental processes at work. In addition to molecular pinning levels, he identifies adsorption-induced band bending and gap-state density of states as playing a crucial role in the interlayer-modified energy-level alignment, thus laying the foundation for rationally controlling HIOS interface electronic properties. The thesis also presents quantitative descriptions of many aspects of the processes, opening the door for innovative HIOS interfaces and for future applications of ZnO in electronic devices. |
You may like...
Smart Sensors and MEMS - Intelligent…
S. Nihtianov, A. Luque
Paperback
Mems for Automotive and Aerospace…
Michael Kraft, Neil M. White
Hardcover
R4,041
Discovery Miles 40 410
Lossless Information Hiding in Images
Zheming Lu, Shize Guo
Paperback
|