![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials
"The semiconductor industry is at the forefront of current tensions over international trade and investment in high technology industries. This book traces the struggle between U.S. and Japanese semiconductor producers from its origins in the 1950s to the novel experiment with ""managed trade"" embodied in the U.S.-Japan Semiconductor Trade Arrangements of 1986, and the current debate over continuation of elements of that agreement. Flamm provides a thorough analysis of this experiment and its consequences for U.S. semiconductor producers and users, and presents extensive discussion of patterns of competition within the semiconductor industry. Using a wealth of new data, he argues that a fundamentally new trade regime for high technology industries is needed to escape from the present impasse. He lays out the alternatives, from laissez-faire to managed trade, and argues strongly for a new set of international ground rules to regulate acceptable behavior by government and firms in high-tech industries. Flamm's detailed analysis of competition within the semiconductor industry will be of great value to those interested in the industrial organization of high-technology industries, as well as those concerned with trade and technology policy, international competition, and Japanese industrial policies. "
Lithium niobate, LiNbO , is an oxide ferroelectric with various kinds of pro- 3 nouncedphysicalproperties. Thisversatilityhaspromoteditscareerinscience anddevices. Ithasbeenparticularlyfruitfulintheopticalregime,wheremany e?ects have been found in LiNbO and devices introduced using it as a host. 3 One of the few big drawbacks, namely the low level laser damage threshold based on photorefraction due to extrinsic defects was discovered very early. A relatively new topic, not involved so far in any general description, is a fundamental dependence of the optical properties of LiNbO on intrinsic de- 3 fects. Their importance has been realised out due to the development of varies growthtechniquesintherecentpast. Theprogressinthegrowthandstudiesof LiNbO crystals with di?erent composition, particularly almost stoichiomet- 3 ric ones, has revealed a signi?cant and sometimes decisive role of the intrinsic defects. For example, the photoinduced charge transport, and therefore the photorefractive properties governing the recording of the phase gratings in LiNbO , are strongly controlled by the content of intrinsic defects. The re- 3 cently found impact of intrinsic defects on the coercive ?eld in LiNbO is 3 of fundamental importance for the creation of periodically poled structures (PPLN) aimed at the optical-frequency conversion in the quasi-phase mat- ing (QPM) mode of operation. As a consequence of these results, an idea of the intrinsic defects in LiNbO has been developed during the last decade 3 and involves microscopic studies on defects, photorefraction and ferroelectric switching using spectroscopic and structure methods.
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students
Advances in the semiconductor technology have enabled steady, exponential im- provement in the performance of integrated circuits. Miniaturization allows the integration of a larger number of transistors with enhanced switching speed. Novel transistor structures and passivation materials diminish circuit delay by minimizing parasitic electrical capacitance. These advances, however, pose several challenges for the thermal engineering of integrated circuits. The low thermal conductivities of passivation layers result in large temperature rises and temperature gradient magni- tudes, which degrade electrical characteristics of transistors and reduce lifetimes of interconnects. As dimensions of transistors and interconnects decrease, the result- ing changes in current density and thermal capacitance make these elements more susceptible to failure during brief electrical overstress. This work develops a set of high-resolution measurement techniques which de- termine temperature fields in transistors and interconnects, as well as the thermal properties of their constituent films. At the heart of these techniques is the thermore- flectance thermometry method, which is based on the temperature dependence of the reflectance of metals. Spatial resolution near 300 nm and temporal resolution near IOns are demonstrated by capturing transient temperature distributions in intercon- nects and silicon-on-insulator (SOl) high-voltage transistors. Analyses of transient temperature data obtained from interconnect structures yield thermal conductivities and volumetric heat capacities of thin films.
Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only reviews the progress made since the early days of pulsar astronomy, but especially focuses on questions such as: "What have we learned about the subject and how did we learn it?," "What are the most important open questions in this area?" and "What new tools, telescopes, observations, and calculations are needed to answer these questions?." All authors who have contributed to this book have devoted a significant part of their scientific careers to exploring the nature of neutron stars and understanding pulsars. Everyone has paid special attention to writing educational comprehensive review articles with the needs of beginners, students and young scientists as potential readers in mind. This book will be a valuable source of information for these groups.
This book systematically discusses the modeling and application of transfer manipulation for flexible electronics packaging, presenting multiple processes according to the geometric sizes of the chips and devices as well as the detailed modeling and computation steps for each process. It also illustrates the experimental design of the equipment to help readers easily learn how to use it. This book is a valuable resource for scholars and graduate students in the research field of microelectronics.
Emerging Memories: Technologies and Trends attempts to provide
background and a description of the basic technology, function and
properties of emerging as well as discussing potentially suitable
applications.
Solid State Gas Sensing offers insight into the principles, applications, and new trends in gas sensor technology. Developments in this field are rapidly advancing due to the recent and continuing impact of nanotechnology, and this book addresses the demand for small, reliable, inexpensive and portable systems for monitoring environmental concerns, indoor air quality, food quality, and many other specific applications. Working principles, including electrical, permittivity, field effect, electrochemical, optical, thermometric and mass (both quartz and cantilever types), are discussed, making the book valuable and accessible to a variety of researchers and engineers in the field of material science.
'Designing Embedded Processors' examines the many ways in which processor based systems are designed to allow low power devices. It looks at processor design methods, memory optimization, dynamic voltage scaling methods, compiler methods, and multi processor methods. Each section has an introductory chapter to give a breadth view, and have a few specialist chapters in the area to give a deeper perspective. The book provides a good starting point to engineers in the area, and to research students embarking upon the exciting area of embedded systems and architectures.
This book provides a comprehensive and up-to-date description of the Josephson effect, a topic of never-ending interest in both fundamental and applied physics. In this volume, world-renowned experts present the unique aspects of the physics of the Josephson effect, resulting from the use of new materials, of hybrid architectures and from the possibility of realizing nanoscale junctions. These new experimental capabilities lead to systems where novel coherent phenomena and transport processes emerge. All this is of great relevance and impact, especially when combined with the didactic approach of the book. The reader will benefit from a general and modern view of coherent phenomena in weakly-coupled superconductors on a macroscopic scale. Topics that have been only recently discussed in specialized papers and in short reviews are described here for the first time and organized in a general framework. An important section of the book is also devoted to applications, with focus on long-term, future applications. In addition to a significant number of illustrations, the book includes numerous tables for comparative studies on technical aspects.
This book presents selected papers from the fourth edition of the GraphX conference series, GraphITA 2015. Its content range from fundamentals to applications of graphene and other 2D material such as silicene, BN and MoS2. The newest technological challenges in the field are described in this book, written by worldwide known scientists working with 2D materials.The chapter 'Morphing Graphene-Based Systems for Applications: Perspectives from Simulations' is published open access under a CC BY 4.0 license.
This excellent volume covers a range of materials used for flexible electronics, including semiconductors, dielectrics, and metals. The functional integration of these different materials is treated as well. Fundamental issues for both organic and inorganic materials systems are included. A corresponding overview of technological applications, based on each materials system, is presented to give both the non-specialist and the researcher in the field relevant information on the status of the flexible electronics area.
This book is dedicated to the new two-dimensional one-atomic-layer-thick materials such as graphene, metallic chalcogenides, silicene and other 2D materials. The book describes their main physical properties and applications in nanoelctronics, photonics, sensing and computing. A large part of the book deals with graphene and its amazing physical properties. Another important part of the book deals with semiconductor monolayers such as MoS2 with impressive applications in photonics, and electronics. Silicene and germanene are the atom-thick counterparts of silicon and germanium with impressive applications in electronics and photonics which are still unexplored. Consideration of two-dimensional electron gas devices conclude the treatment. The physics of 2DEG is explained in detail and the applications in THz and IR region are discussed. Both authors are working currently on these 2D materials developing theory and applications.
Ferroelectric memories have changed in 10 short years from academic curiosities of the university research labs to commercial devices in large-scale production. This is the first text on ferroelectric memories that is not just an edited collection of papers by different authors. Intended for applied physicists, electrical engineers, materials scientists and ceramists, it includes ferroelectric fundamentals, especially for thin films, circuit diagrams and processsing chapters, but emphazises device physics. Breakdown mechanisms, switching kinetics and leakage current mechanisms have lengthly chapters devoted to them. The book will be welcomed by research scientists in industry and government laboratories and in universities. It also contains 76 problems for students, making it particularly useful as a textbook for fourth-year undergraduate or first-year graduate students.
This book contains the selected papers of the Sixth International Workshop on Medical and Service Robots (MESROB 2018), held in Cassino, Italy, in 2018. The main topics of the workshop include: design of medical devices, kinematics and dynamics for medical robotics, exoskeletons and prostheses, anthropomorphic hands , therapeutic robots and rehabilitation, cognitive robots, humanoid and service robots, assistive robots and elderly assistance, surgical robots, human-robot interfaces, haptic devices, and medical treatments.
The book deals with the numerical simulation of noise in semiconductor devices operating in linear (small-signal) and nonlinear (large-signal) conditions. The main topics of the book are: An overview of the physical basis of noise in semiconductor devices, a detailed treatment of numerical noise simulation in small-signal conditions, and a presentation of innovative developments in the noise simulation of semiconductor devices operating in large-signal quasi-periodic conditions. The main benefit that the reader will derive from the book is the ability to understand, and, if needed, replicate the development of numerical, physics-based noise simulation of semiconductor devices in small-signal and large-signal conditions.
This book focuses on the fundamental phenomena at nanoscale. It covers synthesis, properties, characterization and computer modelling of nanomaterials, nanotechnologies, bionanotechnology, involving nanodevices. Further topics are imaging, measuring, modeling and manipulating of low dimensional matter at nanoscale. The topics covered in the book are of vital importance in a wide range of modern and emerging technologies employed or to be employed in most industries, communication, healthcare, energy, conservation , biology, medical science, food, environment, and education, and consequently have great impact on our society.
Primary goal of this book is to provide a cohesive description of the vast field of semiconductor quantum devices, with special emphasis on basic quantum-mechanical phenomena governing the electro-optical response of new-generation nanomaterials. The book will cover within a common language different types of optoelectronic nanodevices, including quantum-cascade laser sources and detectors, few-electron/exciton quantum devices, and semiconductor-based quantum logic gates. The distinguishing feature of the present volume is a unified microscopic treatment of quantum-transport and coherent-optics phenomena on ultrasmall space- and time-scales, as well as of their semiclassical counterparts. Content Level Research
The past five years have witnessed some dramatic developments in the general area of ferroelectric thin films materials and devices. Ferroelectrics are not new materials by any stretch ofimagination. Indeed, they have been known since the early partofthis century and popular ferroelectric materials such as Barium Titanate have been in use since the second world war. In the late sixties and seventies, a considerable amountofresearch and development effort was made to create a solid state nonvolatile memory using ferroelectrics in a vary simple matrix-addressed scheme. These attempts failed primarily due to problems associated with either the materials ordue to device architectures. The early eighties saw the advent of new materials processing approaches, such as sol-gel processing, that enabled researchers to fabricate sub-micron thin films of ferroelectric materials on a silicon substrate. These pioneering developments signaled the onsetofa revival in the areaofferroelectric thin films, especially ferroelectric nonvolatile memories. Research and development effort in ferroelectric materials and devices has now hit a feverish pitch, Many university laboratories, national laboratories and advanced R&D laboratories oflarge IC manufacturers are deeply involved in the pursuit of ferroelectric device technologies. Many companies worldwide are investing considerable manpower and resources into ferroelectric technologies. Some have already announced products ranging from embedded memories in micro controllers, low density stand-alone memories, microwave circuit elements, andrf identification tags. There is now considerable optimism that ferroelectric devices andproducts will occupy a significant market-share in the new millennium."
Diluted magnetic semiconductors, or semimagnetic semiconductors, seemed for a while to be one of those research topics whose glory (i. e. , the period of most ext- sive research) belongedalready to the past. This particularlyapplied to "traditional" diluted magnetic semiconductors, i. e. , substitutional alloys of either II-VI or IV-VI semiconductors with transition metal ions. Fortunately, a discovery, in the beg- ning of the nineties [1,2], of ferromagnetic ordering in III-V DMSs with critical temperatures reaching 170 K has renewed and greatly intensi ed an interest in those materials. This was, at least partially, related to expectations that their Curie temperatures can be relatively easily brought to room temperature range through a clearly delineatedpath and,partially,due to the great successes, also commercial,of metallic version of spintronics, which earned its founders the Nobel Prize in 2007. The semiconductor version of spintronics has attracted researchers also because of hopes to engage it in efforts to construct quantum information processing devices. While these hopes and expectations are not fully realized yet, the effort is going on. As a goodexampleof recentachievements,new resultson quantumdotsconta- ing a single magnetic ion should be mentioned. A great progress has been achieved in studies of excitonic states in such quantum dots, so far limited to InAs/GaAs [3,4] and CdTe/ZnTe [5,6] material systems and to Manganese as the magnetic ion. Furthermore, in the II-VI QDs, rst results on the optical control of the Mn spin states havebeenexperimentallydemonstrated[7-9]andtheoreticallyanalyzed[10]; the studies of Mn spin dynamics and control in III-V QDs will certainly follow.
Adaptronic structures and systems are engineered to adjust automatically to variable operating and environmental conditions, through the use of feedback control. The authors of this book have taken on the task of comprehensively describing the current state of the art in this highly modern and broadly interdisciplinary field. The book presents selected examples of applications, and goes on to demonstrate current development trends.
The monograph will be dedicated to SRAM (memory) design and test issues in nano-scaled technologies by adapting the cell design and chip design considerations to the growing process variations with associated test issues. Purpose: provide process-aware solutions for SRAM design and test challenges.
This book contains more than the IEEE Standard 1149.4. It also contains the thoughts of those who developed the standard. Adam Osseiran has edited the original writings of Brian Wilkins, Colin Maunder, Rod Tulloss, Steve Sunter, Mani Soma, Keith Lofstrom and John McDermid, all of whom have personally contributed to this standard. To preserve the original spirit, only minor changes were made, and the reader will sense a chapter-to-chapter variation in the style of expression. This may appear awkward to some, although I found the Iack of monotonicity refreshing. A system consists of a specific organization of parts. The function of the system cannot be performed by an individual part or even a disorganized collection ofthe same parts. Testing has a system-like characteristic. Testing of a system does not follow directly from the testing of its parts, and a system built with testable parts can sometimes be impossible to test. Therefore, testability of the system must be organized. Some years ago, the IEEE published the boundary-scan Standard 1149.1. That Standard provided an architecture for digital VLSI chips. The chips designed with the 1149.1 architecture can be integrated into a testable system. However, many systems today contain both analog and digital chips. Even if all digital chips are compliant with the standard, the testability of a mixed-signal system cannot be guaranteed. The new Standard 1149.4, described in this book, extends the previous architecture to mixed-signal systems.
This thesis deals with strongly luminescent lanthanide complexes having novel coordination structures. Luminescent lanthanide complexes are promising candidates as active materials for EL devices, lasers, and bio-sensing applications. The organic ligands in lanthanide complexes control geometrical and vibrational frequency structures that are closely related to the luminescent properties. In most of the previous work, however, lanthanide complexes have high-vibrational frequency C-H units close to the metal center for radiationless transition. In this thesis, the luminescent properties of lanthanide complexes with low-vibrational frequency C-F and P=O units are elucidated in terms of geometrical, vibrational, and chemical structures. The author also describes lanthanide coordination polymers with both high thermal stability (decomposition point > 300 DegreesC) and strong-luminescent properties (emission quantum yield > 80%). The author believes that novel studies on the characteristic structures and photophysical properties of lanthanide complexes may open up a frontier field in photophysical, coordination and material chemistry.
A Flash memory is a Non Volatile Memory (NVM) whose "unit cells" are fabricated in CMOS technology and programmed and erased electrically. In 1971, Frohman-Bentchkowsky developed a folating polysilicon gate tran sistor [1, 2], in which hot electrons were injected in the floating gate and removed by either Ultra-Violet (UV) internal photoemission or by Fowler Nordheim tunneling. This is the "unit cell" of EPROM (Electrically Pro grammable Read Only Memory), which, consisting of a single transistor, can be very densely integrated. EPROM memories are electrically programmed and erased by UV exposure for 20-30 mins. In the late 1970s, there have been many efforts to develop an electrically erasable EPROM, which resulted in EEPROMs (Electrically Erasable Programmable ROMs). EEPROMs use hot electron tunneling for program and Fowler-Nordheim tunneling for erase. The EEPROM cell consists of two transistors and a tunnel oxide, thus it is two or three times the size of an EPROM. Successively, the combination of hot carrier programming and tunnel erase was rediscovered to achieve a single transistor EEPROM, called Flash EEPROM. The first cell based on this concept has been presented in 1979 [3]; the first commercial product, a 256K memory chip, has been presented by Toshiba in 1984 [4]. The market did not take off until this technology was proven to be reliable and manufacturable [5]. |
![]() ![]() You may like...
Water, Environment and Society in Times…
Arie S. Issar, N. Brown
Hardcover
R4,479
Discovery Miles 44 790
Linking Gender to Climate Change Impacts…
Shouraseni Sen Roy
Hardcover
R3,119
Discovery Miles 31 190
Climate Ethics - Essential Readings
Stephen M. Gardiner, Simon Caney, …
Hardcover
R4,217
Discovery Miles 42 170
Anthropology and Climate Change - From…
Susan A. Crate, Mark Nuttall
Hardcover
R4,317
Discovery Miles 43 170
|