![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials
Transparent conducting materials are key elements in a wide variety of current technologies including flat panel displays, photovoltaics, organic, low-e windows and electrochromics. The needs for new and improved materials is pressing, because the existing materials do not have the performance levels to meet the ever- increasing demand, and because some of the current materials used may not be viable in the future. In addition, the field of transparent conductors has gone through dramatic changes in the last 5-7 years with new materials being identified, new applications and new people in the field. "Handbook of Transparent Conductors" presents transparent conductors in a historical perspective, provides current applications as well as insights into the future of the devices. It is a comprehensive reference, and represents the most current resource on the subject.
Narrow gap semiconductors obey the general rules of semiconductor science, but often exhibit extreme features of these rules because of the same properties that produce their narrow gaps. Consequently these materials provide sensitive tests of theory, and the opportunity for the design of innovative devices. Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. Device Physics of Narrow Gap Semiconductors, a forthcoming second book, offers descriptions of the materials science and device physics of these unique materials. Topics covered include impurities and defects, recombination mechanisms, surface and interface properties, and the properties of low dimensional systems for infrared applications. This book will help readers to understand not only semiconductor physics and materials science, but also how they relate to advanced opto-electronic devices. The final chapter describes the device physics of photoconductive detectors, photovoltaic infrared detectors, super lattices and quantum wells, infrared lasers, and single photon infrared detectors.
This book provides students and practicing chip designers with an easy-to-follow yet thorough, introductory treatment of the most promising emerging memories under development in the industry. Focusing on the chip designer rather than the end user, this book offers expanded, up-to-date coverage of emerging memories circuit design. After an introduction on the old solid-state memories and the fundamental limitations soon to be encountered, the working principle and main technology issues of each of the considered technologies (PCRAM, MRAM, FeRAM, ReRAM) are reviewed and a range of topics related to design is explored: the array organization, sensing and writing circuitry, programming algorithms and error correction techniques are reviewed comparing the approach followed and the constraints for each of the technologies considered. Finally the issue of radiation effects on memory devices has been briefly treated. Additionally some considerations are entertained about how emerging memories can find a place in the new memory paradigm required by future electronic systems. This book is an up-to-date and comprehensive introduction for students in courses on memory circuit design or advanced digital courses in VLSI or CMOS circuit design. It also serves as an essential, one-stop resource for academics, researchers and practicing engineers.
The thermal processing of materials ranges from few fem to seconds by Swift Heavy Ion Implantation to about one second using advanced Rapid Thermal Annealing. This book offers after an historical excursus selected contributions on fundamental and applied aspects of thermal processing of classical elemental semiconductors and other advanced materials including nanostructures with novel optoelectronic, magnetic, and superconducting properties. Special emphasis is given on the diffusion and segregation of impurity atoms during thermal treatment. A broad range of examples describes the solid phase and/or liquid phase processing of elemental and compound semiconductors, dielectric composites and organic materials.
System-Level Design Techniques for Energy-Efficient Embedded
Systems addresses the development and validation of co-synthesis
techniques that allow an effective design of embedded systems with
low energy dissipation. The book provides an overview of a
system-level co-design flow, illustrating through examples how
system performance is influenced at various steps of the flow
including allocation, mapping, and scheduling. The book places
special emphasis upon system-level co-synthesis techniques for
architectures that contain voltage scalable processors, which can
dynamically trade off between computational performance and power
consumption. Throughout the book, the introduced co-synthesis
techniques, which target both single-mode systems and emerging
multi-mode applications, are applied to numerous benchmarks and
real-life examples including a realistic smart phone.
This work investigates the energy-level alignment of hybrid inorganic/organic systems (HIOS) comprising ZnO as the major inorganic semiconductor. In addition to offering essential insights, the thesis demonstrates HIOS energy-level alignment tuning within an unprecedented energy range. (Sub)monolayers of organic molecular donors and acceptors are introduced as an interlayer to modify HIOS interface-energy levels. By studying numerous HIOS with varying properties, the author derives generally valid systematic insights into the fundamental processes at work. In addition to molecular pinning levels, he identifies adsorption-induced band bending and gap-state density of states as playing a crucial role in the interlayer-modified energy-level alignment, thus laying the foundation for rationally controlling HIOS interface electronic properties. The thesis also presents quantitative descriptions of many aspects of the processes, opening the door for innovative HIOS interfaces and for future applications of ZnO in electronic devices.
The ELFNET Book on Failure Mechanisms, Testing Methods, and Quality Issues of Lead-Free Solder Interconnects is the work of the European network ELFNET which was founded by the European Commission in the 6th Framework Programme. It brings together contributions from the leading European experts in lead-free soldering. The limited validity of testing methods originating from tin-lead solder was a major point of concern in ELFNET members' discussions. As a result, the network's reliability group decided to bring together the material properties of lead-free solders, as well as the basics of material science, and to discuss their influence on the procedures for accelerated testing. This has led to a matrix of failure mechanisms and their activation and, as a result, to a comprehensive coverage of the scientific background and its applications in reliability testing of lead-free solder joints. The ELFNET Book on Failure Mechanisms, Testing Methods, and Quality Issues of Lead-Free Solder Interconnects is written for scientists, engineers and researchers involved with lead-free electronics.
The topics include bonding-based fabrication methods of silicon-on-insulator, photonic crystals, VCSELs, SiGe-based FETs, MEMS together with hybrid integration and laser lift-off. The non-specialist will learn about the basics of wafer bonding and its various application areas, while the researcher in the field will find up-to-date information about this fast-moving area, including relevant patent information.
The present book provides recent developments in various in vivo imaging and sensing techniques such as photo acoustics (PA) imaging and microscopy, ultrasound-PA combined modalities, optical coherence tomography (OCT) and micro OCT, Raman and surface enhanced Raman scattering (SERS), Fluorescence lifetime imaging (FLI) techniques and nanoparticle enabled endoscopy etc. There is also a contributing chapter from leading medical instrumentation company on their view of optical imaging techniques in clinical laparoscopic surgery. The UN proclaimed 2015 as the International Year of Light and Light-based Technologies, emphasizing achievements in the optical sciences and their importance to human beings. In this context, this book focusses on the recent advances in biophotonics techniques primarily focused towards translational medicine contributed by thought leaders who have made cutting edge developments in various photonics techniques.
Narrow Gap II-VI Compounds for Optoelectronic and Electromagnetic Applications will enable readers to gain an insight into this extremely important area of electronic materials activity. Specialists in the field will benefit from its wide-ranging and topical coverage of the subject. At the same time, each of the chapters covers the basic principles associated with the topic concerned and includes references for further study and so will be suitable for advanced graduate courses. Narrow Gap II-VI Compounds for Optoelectronic and Electromagnetic Applications is organised in three main sections. The first covers the growth of materials from the earliest, though still used, bulk techniques, through to the more recent epitaxial techniques, based on both liquid and gas phases, and includes the exciting new area of low dimensional solids and the novel concepts which arise from them. The second section discusses the properties of the materials which make them useful in optical, transport, doping, defects, diffusion and structural applications, and the interfacial and surface effects. In addition, there is a separate chapter on dilute magnetic semiconductors and their unique and fascinating properties. Finally, there is a devices section which encompasses the major fields of infrared detection and emission, by several device types, and the expanding areas of solar cell production and room temperature detection of X-rays and gamma-rays.
Microcantilevers for Atomic Force Microscope Data Storage describes a research collaboration between IBM Almaden and Stanford University in which a new mass data storage technology was evaluated. This technology is based on the use of heated cantilevers to form submicron indentations on a polycarbonate surface, and piezoresistive cantilevers to read those indentations. Microcantilevers for Atomic Force Microscope Data Storage describes how silicon micromachined cantilevers can be used for high-density topographic data storage on a simple substrate such as polycarbonate. The cantilevers can be made to incorporate resistive heaters (for thermal writing) or piezoresistive deflection sensors (for data readback). The primary audience for Microcantilevers for Atomic Force Microscope Data Storage is industrial and academic workers in the microelectromechanical systems (MEMS) area. It will also be of interest to researchers in the data storage industry who are investigating future storage technologies.
This book is devoted to logic synthesis and design techniques for asynchronous circuits. It uses the mathematical theory of Petri Nets and asynchronous automata to develop practical algorithms implemented in a public domain CAD tool. Asynchronous circuits have so far been designed mostly by hand, and are thus much less common than their synchronous counterparts, which have enjoyed a high level of design automation since the mid-1970s. Asynchronous circuits, on the other hand, can be very useful to tackle clock distribution, modularity, power dissipation and electro-magnetic interference in digital integrated circuits. This book provides the foundation needed for CAD-assisted design of such circuits, and can also be used as the basis for a graduate course on logic design.
For emerging energy saving technologies superconducting materials with superior performance are needed. Such materials can be developed by manipulating the "elementary building blocks" through nanostructuring. For superconductivity the "elementary blocks" are Cooper pair and fluxon (vortex). This book presents new ways how to modify superconductivity and vortex matter through nanostructuring and the use of nanoscale magnetic templates. The basic nano-effects, vortex and vortex-antivortex patterns, vortex dynamics, Josephson phenomena, critical currents, and interplay between superconductivity and ferromagnetism at the nanoscale are discussed. Potential applications of nanostructured superconductors are also presented in the book.
In this thesis, the author has developed a high-resolution spin-resolved photoemission spectrometer that achieves the world-best energy resolution of 8 meV. The author has designed a new, highly efficient mini Mott detector that has a large electron acceptance angle and an atomically flat gold target to enhance the efficiency of detecting scattered electrons. The author measured the electron and spin structure of Bi thin film grown on a Si(111) surface to study the Rashba effect. Unlike the conventional Rashba splitting, an asymmetric in-plane spin polarization and a tremendous out-of-plane spin component were observed. Moreover, the author found that the spin polarization of Rashba surface states is reduced by decreasing the film thickness, which indicates the considerable interaction of Rashba spin-split states between the surface and Bi/Si interface.
The first edition of this book provided an introduction to the many static and dynamic features of magnetic flux structures in what are now called classical or low-temperature superconductors. It went out of print not long after the discovery of high-temperature superconductors in 1986 by J.G. Bednorz and K.A. Miiller, a discovery which resulted worldwide in an explosive growth of research and development in the field of superconductivity. Because of this upsurge of activities, a strong demand for this book clearly continued. Since the contents of the fourteen chapters of the first edition are still valid and continue to represent a useful introduction into the various subjects, it was felt that a reprinting of these chapters in this second edition would be highly attractive. In this way, the reader is also able to trace the earlier scienti fic developments, themselves constituting important ideas sometimes forgot ten by the new community dealing with high-temperature superconductivity. However, because of the exciting and important recent progress in the field of high-temperature superconductivity, an extensive chapter has been added in this second edition. It provides a summary of the new developments and a discussion of the highlights. Here keywords such as vortex matter, vortex imaging, and half-integer magnetic flux quanta describe surprising new issues."
Laser diodes represent a key element in the emerging field of opto electronics which includes, for example, optical communication, optical sensors or optical disc systems. For all these applications, information is either transmitted, stored or read out. The performance of these systems depends to a great deal on the performance of the laser diode with regard to its modulation and noise characteristics. Since the modulation and noise characteristics of laser diodes are of vital importance for optoelectronic systems, the need for a book arises that concentrates on this subject. This book thus closes the gap between books on the device physics of semiconductor lasers and books on system design. Complementary to the specific topics concerning modulation and noise, the first part of this book reviews the basic laser characteristics, so that even a reader without detailed knowledge of laser diodes may follow the text. In order to understand the book, the reader should have a basic knowledge of electronics, semiconductor physics and optical communica tions. The work is primarily written for the engineer or scientist working in the field of optoelectronics; however, since the book is self-contained and since it contains a lot of numerical examples, it may serve as a textbook for graduate students. In the field of laser diode modulation and noise a vast amount has been published during recent years. Even though the book contains more than 600 references, only a small part of the existing literature is included."
The goal of this book is to bring together into one accessible text the fundamentals of the many disciplines needed by today's engineer working in the field of microelectromechanical systems (MEMS). The subject matter is wide-ranging: microfabrication, mechanics, heat flow, electronics, noise, and dynamics of systems, with and without feedback. Because it is very difficult to enunciate principles of good design' in the abstract, the book is organized around a set of Case Studies that are based on real products, or, where appropriately well-documented products could not be found, on thoroughly published prototype work. The Case Studies were selected to sample a multidimensional space: different manufacturing and fabrication methods, different device applications, and different physical effects used for transduction. The Case Study subjects are: the design and packaging of a piezoresistive pressure sensor, a capacitively-sensed accelerometer, a quartz piezoelectrically-driven and sensed rate gyroscope, two electrostatically-actuated optical projection displays, two microsystems for the amplification of DNA, and a catalytic sensor for combustible gases. This book is used for a graduate course in Design and Fabrication of Microelectromechanical Devices (MEMS)' at the Massachusetts Institute of Technology. It is appropriate for textbook use by senior/graduate courses in MEMS, and will be a useful reference for the active MEMS professional. Each chapter is supplemented with homework problems and suggested related reading. In addition, the book is supported by a web site that will include additional homework exercises, suggested design problems and related teaching materials, and software usedin the textbook examples and homework problems.
Arranged in a format that follows the industry-common ASIC physical design flow, Physical Design Essentials begins with general concepts of an ASIC library, then examines floorplanning, placement, routing, verification, and finally, testing. Among the topics covered are Basic standard cell design, transistor-sizing, and layout styles; Linear, non-linear, and polynomial characterization; Physical design constraints and floorplanning styles; Algorithms used for placement; Clock Tree Synthesis; Parasitic extraction; Electronic Testing, and many more.
For courses in 8051 Microcontrollers and Embedded Systems The 8051 Microprocessor: A Systems Approach emphasizes the programming and interfacing of the 8051. Using a systematic, step-by-step approach, the text covers various aspects of 8051, including C and Assembly language programming and interfacing. Throughout each chapter, examples, sample programs, and sectional reviews clarify the concepts and offer students an opportunity to learn by doing.
Dear Readers, Since the ground-breaking, Nobel-prize crowned work of Heeger, MacDiarmid, and Shirakawa on molecularly doped polymers and polymers with an alternating bonding structure at the end of the 1970s, the academic and industrial research on hydrocarbon-based semiconducting materials and devices has made encouraging progress. The strengths of semiconducting polymers are currently mainly unfolding in cheap and easily assembled thin ?lm transistors, light emitting diodes, and organic solar cells. The use of so-called "plastic chips" ranges from lightweight, portable devices over large-area applications to gadgets demanding a degree of mechanical ?exibility, which would overstress conventionaldevices based on inorganic,perfect crystals. The ?eld of organic electronics has evolved quite dynamically during the last few years; thus consumer electronics based on molecular semiconductors has gained suf?cient market attractiveness to be launched by the major manufacturers in the recent past. Nonetheless, the numerous challenges related to organic device physics and the physics of ordered and disordered molecular solids are still the subjects of a cont- uing lively debate. The future of organic microelectronics will unavoidably lead to new devi- physical insights and hence to novel compounds and device architectures of - hanced complexity. Thus, the early evolution of predictive models and precise, computationally effective simulation tools for computer-aided analysis and design of promising device prototypes will be of crucial importance.
This monograph is the first roadmap for transparent electronics. It defines and assesses what and where the field is, where it is going, and what needs to happen to get it there. Although the central focus of this monograph involves transparent electronics, many of the materials, devices, circuits, and process integration strategies discussed will be of great interest to researchers working in other emerging fields, including printed electronics, large-area electronics, low-cost electronics, and disposable electronics.
The advent of low temperature superconductors in the early 1960's converted what had been a laboratory curiosity with very limited possibilities to a prac tical means of fabricating electrical components and devices with lossless con ductors. Using liquid helium as a coolant, the successful construction and operation of high field strength magnet systems, alternators, motors and trans mission lines was announced. These developments ushered in the era of what may be termed cryogenic power engineering and a decade later successful oper ating systems could be found such as the 5 T saddle magnet designed and built in the United States by the Argonne National Laboratory and installed on an experimental power generating facility at the High Temperature Institute in Moscow, Russia. The field of digital computers provided an incentive of a quite different kind to operate at cryogenic temperatures. In this case, the objective was to ob tain higher switching speeds than are possible at ambient temperatures with the critical issue being the operating characteristics of semiconductor switches under cryogenic conditions. By 1980, cryogenic electronics was established as another branch of electric engineering."
The key element of any fluorescence sensing or imaging technology is the fluorescence reporter, which transforms the information on molecular interactions and dynamics into measurable signals of fluorescence emission. This book, written by a team of frontline researchers, demonstrates the broad field of applications of fluorescence reporters, starting from nanoscopic properties of materials, such as self-assembled thin films, polymers and ionic liquids, through biological macromolecules and further to living cell, tissue and body imaging. Basic information on obtaining and interpreting experimental data is presented and recent progress in these practically important areas is highlighted. The book is addressed to a broad interdisciplinary audience.
Applied Photochemistry encompasses the major applications of the chemical effects resulting from light absorption by atoms and molecules in chemistry, physics, medicine and engineering, and contains contributions from specialists in these key areas. Particular emphasis is placed both on how photochemistry contributes to these disciplines and on what the current developments are. The book starts with a general description of the interaction between light and matter, which provides the general background to photochemistry for non-specialists. The following chapters develop the general synthetic and mechanistic aspects of photochemistry as applied to both organic and inorganic materials, together with types of materials which are useful as light absorbers, emitters, sensitisers, etc. for a wide variety of applications. A detailed discussion is presented on the photochemical processes occurring in the Earth's atmosphere, including discussion of important current aspects such as ozone depletion. Two important distinct, but interconnected, applications of photochemistry are in photocatalytic treatment of wastes and in solar energy conversion. Semiconductor photochemistry plays an important role in these and is discussed with reference to both of these areas. Free radicals and reactive oxygen species are of major importance in many chemical, biological and medical applications of photochemistry, and are discussed in depth. The following chapters discuss the relevance of using light in medicine, both with various types of phototherapy and in medical diagnostics. The development of optical sensors and probes is closely related to diagnostics, but is also relevant to many other applications, and is discussed separately. Important aspects of applied photochemistry in electronics and imaging, through processes such as photolithography, are discussed and it is shown how this is allowing the increasing miniaturisation of semiconductor devices for a wide variety of electronics applications and the development of nanometer scale devices. The final two chapters provide the basic ideas necessary to set up a photochemical laboratory and to characterise excited states. This book is aimed at those in science, engineering and medicine who are interested in applying photochemistry in a broad spectrum of areas. Each chapter has the basic theories and methods for its particular applications and directs the reader to the current, important literature in the field, making Applied Photochemistry suitable for both the novice and the experienced photochemist.
This book primarily covers the fundamental science, synthesis, characterization, optoelectronic properties, and applications of metal oxide nanomaterials. It discusses the basic aspects of synthetic procedures and fabrication technologies, explains the related experimental techniques and also elaborates on the current status of nanostructured oxide materials and related devices. Two major aspects of metal oxide nanostructures - their optical and electrical properties - are described in detail. The first five chapters focus on the optical characteristics of semiconducting materials, especially metal oxides at the nanoscale. The following five chapters discuss the electrical properties observed in metal oxide-based semiconductors and the status quo of device-level developments in a variety of applications such as sensors, transistors, dilute magnetic semiconductors, and dielectric materials. The basic science and mechanism behind the optoelectronic phenomena are explained in detail, to aid readers interested in the structure-property symbiosis in semiconducting nanomaterials. In short, the book offers a valuable reference guide for researchers and academics in the areas of material science and semiconductor technology, especially nanophotonics and electronics. |
![]() ![]() You may like...
The Electrocaloric Effect - Materials…
Andrei L. Kholkin, Oleg V. Pakhomov, …
Paperback
R5,367
Discovery Miles 53 670
Electrochemical Sensors - From Working…
Giuseppe Maruccio, Jagriti Narang
Paperback
R4,213
Discovery Miles 42 130
Fundamentals of Sensor Technology…
Ahmed Barhoum, Zeynep Altintas
Paperback
R7,223
Discovery Miles 72 230
|