![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials
Excellent bridge between general solid-state physics textbook and research articles packed with providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors "The most striking feature of the book is its modern outlook ... provides a wonderful foundation. The most wonderful feature is its efficient style of exposition ... an excellent book." Physics Today "Presents the theoretical derivations carefully and in detail and gives thorough discussions of the experimental results it presents. This makes it an excellent textbook both for learners and for more experienced researchers wishing to check facts. I have enjoyed reading it and strongly recommend it as a text for anyone working with semiconductors I know of no better text I am sure most semiconductor physicists will find this book useful and I recommend it to them." Contemporary Physics Offers much new material: an extensive appendix about the important and by now well-established, deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters."
This proceedings volume archives the contributions of the speakers who attended the NATO Advanced Research Workshop on "Science and Technology of Semiconductor-On-Insulator Structures and Devices Operating in a Harsh Environment" held at the Sanatorium Puscha Ozerna, th th Kyiv, Ukraine, from 25 to 29 April 2004. The semiconductor industry has maintained a very rapid growth during the last three decades through impressive technological achievements which have resulted in products with higher performance and lower cost per function. After many years of development semiconductor-on-insulator materials have entered volume production and will increasingly be used by the manufacturing industry. The wider use of semiconductor (especially silicon) on insulator materials will not only enable the benefits of these materials to be further demonstrated but, also, will drive down the cost of substrates which, in turn, will stimulate the development of other novel devices and applications. In itself this trend will encourage the promotion of the skills and ideas generated by researchers in the Former Soviet Union and Eastern Europe and their incorporation in future collaborations.
Amorphous silicon has enabled a new technology for large-area electronics, with major applications in liquid crystal displays, image sensing and solar power conversion. This book presents a broad description of the current technology and its future potential, so that the reader can understand how the particular properties of amorphous silicon lead to unique applications. Topics covered include the design of the amorphous silicon transistor and sensor devices, the range of matrix-addressed arrays and other systems that can be fabricated, and the performance of the various application areas.
The investigation of nanosized ferroelectric films and ferroelectric nanocrystals has attracted much attention during the past 15 - 20 years. There is interest in the fundamental and applied aspects. The theoretical basis is connected with the development of the Landau-Ginzburg-Devonshire (LGD) mean field and the first principles theories to the ultrathin ferroelectric films with thickness in the vicinity of critical size. Important potential applications are possible nanosize ferroelectric films in non-volatile memories, microelectronics, sensors, pyroelectric and electro-optic devices. This new area of research of ferroelectricity is still in impetuous development and far from completion. Many topics elucidated need generalization. The book contains theory and experimental data for a wide range of ferroelectric materials.
The book covers a variety of studies of organic semiconductors, from fundamental electronic states to device applications, including theoretical studies. Furthermore, innovative experimental techniques, e.g., ultrahigh sensitivity photoelectron spectroscopy, photoelectron yield spectroscopy, spin-resolved scanning tunneling microscopy (STM), and a material processing method with optical-vortex and polarization-vortex lasers, are introduced. As this book is intended to serve as a textbook for a graduate level course or as reference material for researchers in organic electronics and nanoscience from electronic states, fundamental science that is necessary to understand the research is described. It does not duplicate the books already written on organic electronics, but focuses mainly on electronic properties that arise from the nature of organic semiconductors (molecular solids). The new experimental methods introduced in this book are applicable to various materials (e.g., metals, inorganic and organic materials). Thus the book is also useful for experts working in physics, chemistry, and related engineering and industrial fields.
This book addresses the Internet of Things (IoT), an essential topic in the technology industry, policy, and engineering circles, and one that has become headline news in both the specialty press and the popular media. The book focuses on energy efficiency concerns in IoT and the requirements related to Industry 4.0. It is the first-ever "how-to" guide on frequently overlooked practical, methodological, and moral questions in any nations' journey to reducing energy consumption in IoT devices. The book discusses several examples of energy-efficient IoT, ranging from simple devices like indoor temperature sensors, to more complex sensors (e.g. electrical power measuring devices), actuators (e.g. HVAC room controllers, motors) and devices (e.g. industrial circuit-breakers, PLC for home, building or industrial automation). It provides a detailed approach to conserving energy in IoT devices, and comparative case studies on performance evaluation metrics, state-of-the-art approaches, and IoT legislation.
Device Architecture and Materials for Organic Light-Emitting Devices focuses on the design of new device and material concepts for organic light-emitting devices, thereby targeting high current densities and an improved control of the triplet concentration. A new light-emitting device architecture, the OLED with field-effect electron transport, is demonstrated. This device is a hybrid between a diode and a field-effect transistor. Compared to conventional OLEDs, the metallic cathode is displaced by one to several micrometers from the light-emitting zone, reducing optical absorption losses. The electrons injected by the cathode accumulate at an organic heterojunction and are transported to the light-emission zone by field-effect. High mobilities for charge carriers are achieved in this way, enabling a high current density and a reduced number of charge carriers in the device. Pulsed excitation experiments show that pulses down to 1 us can be applied to this structure without affecting the light intensity, suggesting that pulsed excitation might be useful to reduce the accumulation of triplets in the device. The combination of all these properties makes the OLED with field-effect electron transport particularly interesting for waveguide devices and future electrically pumped lasers. In addition, triplet-emitter doped organic materials, as well as the use of triplet scavengers in conjugated polymers are investigated.
Metal Impurities in Silicon-Device Fabrication treats the transition-metal impurities generated during the fabrication of silicon samples and devices. The different mechanisms responsible for contamination are discussed, and a survey is given of their impact on device performance. The specific properties of the main and rare impurities in silicon are examined, as well as the detection methods and requirements in modern technology. Finally, impurity gettering is studied along with modern techniques to determine the gettering efficiency. In all of these subjects, reliable and up-to-date data are presented. This monograph provides a thorough review of the results of recent scientific investigations, as well as the relevant data and properties of the various metal impurities in silicon. The new edition includes important recent data and a number of new tables.
This book covers the fundamental knowledge of layout design from the ground up, addressing both physical design, as generally applied to digital circuits, and analog layout. Such knowledge provides the critical awareness and insights a layout designer must possess to convert a structural description produced during circuit design into the physical layout used for IC/PCB fabrication. The book introduces the technological know-how to transform silicon into functional devices, to understand the technology for which a layout is targeted (Chap. 2). Using this core technology knowledge as the foundation, subsequent chapters delve deeper into specific constraints and aspects of physical design, such as interfaces, design rules and libraries (Chap. 3), design flows and models (Chap. 4), design steps (Chap. 5), analog design specifics (Chap. 6), and finally reliability measures (Chap. 7). Besides serving as a textbook for engineering students, this book is a foundational reference for today's circuit designers. For Slides and Other Information: https://www.ifte.de/books/pd/index.html
Explore the intersection of computer science, physics, and electrical and computer engineering with this discussion of the engineering of quantum computers In Principles of Superconducting Quantum Computers, a pair of distinguished researchers delivers a comprehensive and insightful discussion of the building of quantum computing hardware and systems. Bridging the gaps between computer science, physics, and electrical and computer engineering, the book focuses on the engineering topics of devices, circuits, control, and error correction. Using data from actual quantum computers, the authors illustrate critical concepts from quantum computing. Questions and problems at the end of each chapter assist students with learning and retention, while the text offers descriptions of fundamentals concepts ranging from the physics of gates to quantum error correction techniques. The authors provide efficient implementations of classical computations, and the book comes complete with a solutions manual and demonstrations of many of the concepts discussed within. It also includes: A thorough introduction to qubits, gates, and circuits, including unitary transformations, single qubit gates, and controlled (two qubit) gates Comprehensive explorations of the physics of single qubit gates, including the requirements for a quantum computer, rotations, two-state systems, and Rabi oscillations Practical discussions of the physics of two qubit gates, including tunable qubits, SWAP gates, controlled-NOT gates, and fixed frequency qubits In-depth examinations of superconducting quantum computer systems, including the need for cryogenic temperatures, transmission lines, S parameters, and more Ideal for senior-level undergraduate and graduate students in electrical and computer engineering programs, Principles of Superconducting Quantum Computers also deserves a place in the libraries of practicing engineers seeking a better understanding of quantum computer systems.
This book offers an overview of power electronic applications in the study of power integrated circuit (IC) design, collecting novel research ideas and insights into fast transient response to prevent the output voltage from dropping significantly at the undershoot. It also discusses techniques and training to save energy and increase load efficiency, as well as fast transient response and high efficiency, which are the most important factors for consumer products that implement power IC. Lastly, the book focuses on power electronics for system loop analysis and optimal compensation design to help users and engineers implement their applications. The book is a valuable resource for university researchers, power IC R&D engineers, application engineers and graduate students in power electronics who wish to learn about the power IC design principles, methods, system behavior, and applications in consumer products.
This book highlights some of the latest advances in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe and beyond. It features contributions presented at the 8th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2020), which was held on August 26-29, 2020 at Lviv Polytechnic National University, and was jointly organized by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key findings on material properties, behavior, and synthesis. This book's companion volume also addresses topics such as nano-optics, energy storage, and biomedical applications.
This book provides an up-to-date introduction to the field of functional thin films and materials, encompassing newly developed technologies and fundamental new concepts. The focus is on the critical areas of novel thin films such as sol gel synthesis of membrane, ferroelectric thin films and devices, functional nanostructured thin films, micromechanical analysis of fiber-reinforced composites, and novel applications. An important aspect of the book lies in its wide coverage of practical applications. It introduces not only the cutting-edge technologies in modern industry, but also unique applications in many rapidly advancing fields. This book is written for a wide readership including university students and researchers from diverse backgrounds such as physics, materials science, engineering and chemistry. Both undergraduate and graduate students will find it a valuable reference book on key topics related to solid state and materials science.
The book describes emerging strategies to circumvent transmission and thermalization losses in solar cells, and thereby redefine the limits of solar power conversion efficiency. These strategies include the use of organic molecules and rare-earth metal materials. Approaches to augment the efficiency of these processes via near-field enhancement are described as well. This book includes a discussion of state-of-the-art implementations of these emerging strategies in solar cells, both internally, as in molecular intermediate band and charge carrier multiplication, and externally, such as photon up- and down-conversion. Tools for characterization are also provided. Written by leading researchers in the field, this book can be useful to both beginners and experienced researchers in solar energy.
Quantum wires are artificial structures characterized by nanoscale cross sections that contain charged particles moving along a single degree of freedom. With electronic motions constrained into standing modes along with the two other spatial directions, they have been primarily investigated for their unidimensional dynamics of quantum-confined charge carriers, which eventually led to broad applications in large-scale nanoelectronics. This book is a compilation of articles that span more than 30 years of research on developing comprehensive physical models that describe the physical properties of these unidimensional semiconductor structures. The articles address the effect of quantum confinement on lattice vibrations, carrier scattering rates, and charge transport as well as present practical examples of solutions to the Boltzmann equation by analytical techniques and by numerical simulations such as the Monte Carlo method. The book also presents topics on quantum transport and spin effects in unidimensional molecular structures such as carbon nanotubes and graphene nanoribbons in terms of non-equilibrium Green’s function approaches and density functional theory.
Semiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world. The work is divided into three sections. The first section is
concerned with the fundamental physics of semiconductors, showing
how the electronic features and the lattice dynamics change
drastically when systems vary from bulk to a low-dimensional
structure and further to a nanometer size. Throughout this section
there is an emphasis on the full understanding of the underlying
physics. The second section deals largely with the transformation
of the conceptual framework of solid state physics into devices and
systems which require the growth of extremely high purity, nearly
defect-free bulk and epitaxial materials. The last section is
devoted to exploitation of the knowledge described in the previous
sections to highlight the spectrum of devices we see all around
us. Provides a comprehensive global picture of the semiconductor world Each of the work's three sections presents a complete description of one aspect of the whole Written and Edited by a truly international team of experts
This is an introduction to noise, describing fundamental noise sources and basic circuit analysis, discussing characterization of low-frequency noise and offering practical advice that bridges concepts of noise theory and modelling, characterization, CMOS technology and circuits. The text offers the latest research, reviewing the most recent publications and conference presentations. The book concludes with an introduction to noise in analog/RF circuits and describes how low-frequency noise can affect these circuits.
This thesis investigates passively mode-locked semiconductor lasers by numerical methods. The understanding and optimization of such devices is crucial to the advancement of technologies such as optical data communication and dual comb spectroscopy. The focus of the thesis is therefore on the development of efficient numerical models, which are able both to perform larger parameter studies and to provide quantitative predictions. Along with that, visualization and evaluation techniques for the rich spatio-temporal laser dynamics are developed; these facilitate the physical interpretation of the observed features. The investigations in this thesis revolve around two specific semiconductor devices, namely a monolithically integrated three-section tapered quantum-dot laser and a V-shaped external cavity laser. In both cases, the simulations closely tie in with experimental results, which have been obtained in collaboration with the TU Darmstadt and the ETH Zurich. Based on the successful numerical reproduction of the experimental findings, the emission dynamics of both lasers can be understood in terms of the cavity geometry and the active medium dynamics. The latter, in particular, highlights the value of the developed simulation tools, since the fast charge-carrier dynamics are generally not experimentally accessible during mode-locking operation. Lastly, the numerical models are used to perform laser design explorations and thus to derive recommendations for further optimizations.
Over the years there has been a large increase in the functionality available on a single integrated circuit. This has been mainly achieved by a continuous drive towards smaller feature sizes, larger dies, and better packing efficiency. However, this greater functionality has also resulted in substantial increases in the capital investment needed to build fabrication facilities. Given such a high level of investment, it is critical for IC manufacturers to reduce manufacturing costs and get a better return on their investment. The most obvious method of reducing the manufacturing cost per die is to improve manufacturing yield. Modern VLSI research and engineering (which includes design manufacturing and testing) encompasses a very broad range of disciplines such as chemistry, physics, material science, circuit design, mathematics and computer science. Due to this diversity, the VLSI arena has become fractured into a number of separate sub-domains with little or no interaction between them. This is the case with the relationships between testing and manufacturing. From Contamination to Defects, Faults and Yield Loss: Simulation and Applications focuses on the core of the interface between manufacturing and testing, i.e., the contamination-defect-fault relationship. The understanding of this relationship can lead to better solutions of many manufacturing and testing problems. Failure mechanism models are developed and presented which can be used to accurately estimate probability of different failures for a given IC. This information is critical in solving key yield-related applications such as failure analysis, fault modeling and design manufacturing.
The 2001 Dutch Sensor Conference held on 14 -15 May 2001, at the University of Twente in Enschede, The Netherlands, is the fourth in a series ofmeetings. The conference is initiated by the Dutch Technology Foundation (STW) in order to stimulate the industrial application ofsensor research. This MESA Monograph contains a collection oflatest research and development from all major Dutch centers ofsensor research and aspect ofsensor commercialization. Thus it provides an excellent overview ofthe state ofthe art ofDutch Sensor Technology in the new millennium. I should like to acknowledge the work ofthe program committee, the local organizing committee and, ofcourse, the contributors to this volume. All ofthem made the conference a success. Prof. Dr. Miko Elwenspoek Conference Chairman Program Committee: M. Elwenspoek (Chairman) (MESA+) A.van den Berg (MESA+) PJ. French (TV Delft) P.V. Lambeck (MESA+) H. Leeuwis (3T) J.c. Lotters (Bronkhorst) HAC. Tilmans (IMEC) Contents MEASUREMENT SYSTEM FOR BIOCHEMICAL ANALYSIS BASED 1 ON CAPILLARY ELECTROPHORESIS AND MICROSCALE CONDUCTIVITY DETECTION F. Laugere, A. Berthold, R.M Guijt, E. Baltussen, J. Bastemeijer, P.M Sarro, MJ. Vellekoop ELECTRO-OSMOTIC FLOW CONTROL IN MICROFLUIDICS 7 SYSTEMS R.E. Oosterbroek, MH. Goedbloed, A. Trautmann, N.J. van der Veen, S Schlautmann, 1.W Berenschot, A. van den Berg FLOW SENSING USING THE TEMPERATURE DISTRIBUTION 13 ALONG A HEATED MICROBEAM J.J. van Baar, RJ Wiegerink, GJM Krijnen, T.SJ. Lammerink, M.
In recent years, ever more electronic devices have started to exploit the advantages of organic semiconductors. The work reported in this thesis focuses on analyzing theoretically the energy level alignment of different metal/organic interfaces, necessary to tailor devices with good performance. Traditional methods based on density functional theory (DFT), are not appropriate for analyzing them because they underestimate the organic energy gap and fail to correctly describe the van der Waals forces. Since the size of these systems prohibits the use of more accurate methods, corrections to those DFT drawbacks are desirable. In this work a combination of a standard DFT calculation with the inclusion of the charging energy (U) of the molecule, calculated from first principles, is presented. Regarding the dispersion forces, incorrect long range interaction is substituted by a van der Waals potential. With these corrections, the C60, benzene, pentacene, TTF and TCNQ/Au(111) interfaces are analyzed, both for single molecules and for a monolayer. The results validate the induced density of interface states model.
Uncertainty Quantification of Electromagnetic Devices, Circuits, and Systems describes the advances made over the last decade in the topic of uncertainty quantification (UQ) and stochastic analysis. The primary goal of the book is to educate and inform electronics engineers about the most recent numerical techniques, mathematical theories, and computational methods to perform UQ for electromagnetic devices, circuits, and systems. Importantly, the book offers an in-depth exploration of the recent explosion in surrogate modelling (metamodeling) techniques for numerically efficient UQ. Metamodeling has currently become the most attractive, numerically efficient, and popular approach for UQ. The book begins by introducing the concept of uncertainty quantification in electromagnetic device, circuit, and system simulation. Further chapters cover the theory and applications of polynomial chaos based uncertainty quantification in electrical engineering; dimension reduction strategies to address the curse of dimensionality in polynomial chaos; a predictor-corrector algorithm for fast polynomial chaos based statistical modeling of carbon nanotube interconnects; machine learning approaches towards uncertainty quantification; artificial neural network-based yield optimization with uncertainties in EM structural parameters; exploring order reduction clustering methods for uncertainty quantification of electromagnetic composite structures; and mixed epistemic-aleatory uncertainty using a new polynomial chaos formulation combined with machine learning. A final chapter provides concluding remarks and explores potential future directions for research in the field. The book will be a welcome resource for advanced students and researchers in electromagnetics and applied mathematical modelling who are working on electronic circuit and device design.
Advances in Imaging and Electron Physics, Volume 213, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
GaAs on Si: Device Applications.- Substrate Considerations.- Majority-Carrier Devices.- Minority-Carrier Devices.- Conclusions.- Ion Beam Synthesis in Silicon.- The Ion Implantation Process.- Buried SiO2 Layers in Si.- Buried Monocrystalline CoSi2 Layers in Si.- Conclusions.- Ion Beam Processing of Chemical Vapor Deposited Silicon Layers.- Ion Beam Effects.- Epitaxy of Deposited Layers.- Polycrystal Formation.- Technology and Devices for Silicon Based Three-Dimensional Circuits.- 3D-Technology.- Device Characteristics.- Features of 3D-Circuits.- Demonstrators.- Conclusions.- Integrated Fabrication of Micromechanical Structures on Silicon.- Mechanical Properties of Silicon.- Thermal Properties.- Fabrication Techniques.- Etching.- Anisotropic Etching.- Boron Doped Etch Stop.- Electrochemical Etch Stop.- Embedded Layers.- Surface Microstructures.- Bonding of Layers.- Electrostatic Bonding.- Oxide Bonding.- Bonding to Metals.- Conclusion.- Micromachining of Silicon for Sensors.- Physical Properties of Silicon.- Transduction Techniques.- Fabrication Techniques.- Pressure Sensors.- Accelerometers.- Microresonator Sensors.- Optical Microresonator Sensors.- Conclusions.- Micromachining of Silicon for Sensors.- Hybrid or Monolithic Approach for optoelectronics: That is the question.- About the Hybrid Approach Material Competitors.- Silicon Based Technologies developed at LETI.- Planar and Channel waveguide Properties of IOS Technologies.- Field of Activities.- Integrated Optical Spectrum Analyser (IOSA).- Integrated Optical Sensors.- Optical Communication Applications.- Optical Memories.- Conclusion.- Principles and Implementation of Artificial Neural Networks.- Binary Networks.- Analog Networks.- Miscellaneous Networks.- Future VLSI Networks.- Conclusions.- List of Participants.
The application of MEMS (micro-electro-mechanical systems) in such diverse fields as intelligent microsensors, data storage, biomedical engineering and wireless communication is booming. Focusing on microstereolithography, this timely work provides insight into state-of-the-art microfabrication techniques for 3D microstructures, microdevices and MEMS.
|
![]() ![]() You may like...
How to Develop a Sustainable Business…
Veronique Ambrosini, Gavin Jack, …
Hardcover
R2,348
Discovery Miles 23 480
Prisoner 913 - The Release Of Nelson…
Riaan de Villiers, Jan-Ad Stemmet
Paperback
|