![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials
This new edition presents a unified description of these insulators from one to three dimensions based on the modified Dirac equation. It derives a series of solutions of the bound states near the boundary, and describes the current status of these solutions. Readers are introduced to topological invariants and their applications to a variety of systems from one-dimensional polyacetylene, to two-dimensional quantum spin Hall effect and p-wave superconductors, three-dimensional topological insulators and superconductors or superfluids, and topological Weyl semimetals, helping them to better understand this fascinating field. To reflect research advances in topological insulators, several parts of the book have been updated for the second edition, including: Spin-Triplet Superconductors, Superconductivity in Doped Topological Insulators, Detection of Majorana Fermions and so on. In particular, the book features a new chapter on Weyl semimetals, a topic that has attracted considerable attention and has already become a new hotpot of research in the community.
This thesis presents an in-depth exploration of imperfections that can be found in self-catalysed III-V semiconductor nanowires. By utilising advanced electron microscopy techniques, the interface sharpness and defects at the atomic and macroscopic scale are analysed. It is found that a surprising variety and quantity of defect structures can exist in nanowire systems, and that they can in fact host some never-before-seen defect configurations. To probe how these defects are formed, conditions during nanowire growth can be emulated inside the microscope using the latest generation of in-situ heating holder. This allowed the examination of defect formation, dynamics, and removal, revealing that many of the defects can in fact be eliminated. This information is critical for attaining perfect nanowire growth. The author presents annealing strategies to improve crystal quality, and therefore device performance.
Present-day scienceand technology have become increasingly based on studies and applications of thin films. This is especiallytrue of solid-state physics, semiconduc tor electronics, integrated optics, computer science, and the like. In these fields, it is necessary to use filmswith an ordered structure, especiallysingle-crystallinefilms, because physical phenomena and effects in such films are most reproducible. Also, active parts of semiconductor and other devices and circuits are created, as a rule, in single-crystal bodies. To date, single-crystallinefilms have been mainly epitaxial (or heteroepitaxial); i.e., they have been grown on a single-crystalline substrate, and principal trends, e.g., in the evolution of integrated circuits (lCs), have been based on continuing reduction in feature size and increase in the number of components per chip. However, as the size decreases into the submicrometer range, technological and physical limitations in integrated electronics become more and more severe. It is generally believed that a feature size of about 0.1um will have a crucial character. In other words, the present two-dimensional ICs are anticipated to reach their limit of minimization in the near future, and it is realized that further increase of packing density and/or functions might depend on three-dimensional integration. To solve the problem, techniques for preparation of single-crystalline films on arbitrary (including amorphous) substrates are essential."
This book provides an overview of the current state of the art in novel piezo-composites based on ferroelectrics. Covering aspects ranging from theoretical materials simulation and manufacturing and characterization methods, to the application and performance of these materials, it focuses on the optimization of the material parameters. Presenting the latest findings on modern composites and highlighting the applications of piezoelectric materials for sensors, transducers and hydro-acoustics, the book addresses an important gap in the physics of active dielectrics and materials science and describes new trends in the research on ferroelectric composites.
This book is a compilation of selected papers from the 8th International Multidisciplinary Conference on Optofluidics (IMCO 2018) held in Shanghai on August 5-8, 2018, as well as papers from the IMCO 2019 held in Hong Kong on June 14-17, 2019. The work focuses on the current development in the fields of optofluidics, microfluidics, silicon photonics, optical metamaterials and other related areas. Readers from both academia and industry will benefit from the experts' opinion and the lasted development in the multidisciplinary field of optofluidics.
The contrasting examples of microwave plasmas given in this volume demonstrate their capability of not only covering the totality of expressed needs in that particular field, but in many others. For example the ions and reactive neutral species, indispensable for the synergetic effects in etching and deposition processes can be used in metallurgical treatment, and for materials processing in general. They also have the ability to dissociate molecules and excite atoms as required in analytical chemistry where the information on the constituent concentrations is obtained through optical spectroscopy or mass spectrometry. Finally, microwave plasmas can supply the photons for laser and lighting applications. It is noteworthy that microwave plasmas cover an impressive pressure range of eight orders of magnitude from 10-3 Pa (10-5 torr) to above atmospheric pressure. The versatility of microwave plasmas, their moderate cost, and their ease of implementation particularly appeal to the industrial entrepreneur.
Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology provides a comprehensive overview of materials for application in thin film solar cells. It is the first book that compares experimental and computer-modeling methods, combining the state of the art in technology with the latest insights in device modeling. A wide range of experimental issues are explored, from materials and basic device physics of thin film solar cells to potential mass production facilities for solar panels. The modeling section presents an approach to integrated optical and electrical modeling of complete devices, including optical light trapping, and describes the physical materials parameters related to amorphous silicon that are crucial for successful modeling. The increasing importance of multijunction cells with different bandgap components for thin film silicon cells is reflected in a description of the latest breakthroughs acquired experimentally and by modeling. Concluding chapters describe what can be learned from combined modeling and device fabrication, indicating potential future methods of amorphous silicon solar cell optimization. This book will prove invaluable to researchers in the amorphous and microcrystalline silicon field and the physical and experimental approaches will be of interest to researchers investigating solar cells or other film devices for large area applications.
Highly Sensitive Optical Receivers primarily treats the circuit design of optical receivers with external photodiodes. Continuous-mode and burst-mode receivers are compared. The monograph first summarizes the basics of III/V photodetectors, transistor and noise models, bit-error rate, sensitivity and analog circuit design, thus enabling readers to understand the circuits described in the main part of the book. In order to cover the topic comprehensively, detailed descriptions of receivers for optical data communication in general and, in particular, optical burst-mode receivers in deep-sub-um CMOS are presented. Numerous detailed and elaborate illustrations facilitate better understanding. "
Quantum wires are artificial structures characterized by nanoscale cross sections that contain charged particles moving along a single degree of freedom. With electronic motions constrained into standing modes along with the two other spatial directions, they have been primarily investigated for their unidimensional dynamics of quantum-confined charge carriers, which eventually led to broad applications in large-scale nanoelectronics. This book is a compilation of articles that span more than 30 years of research on developing comprehensive physical models that describe the physical properties of these unidimensional semiconductor structures. The articles address the effect of quantum confinement on lattice vibrations, carrier scattering rates, and charge transport as well as present practical examples of solutions to the Boltzmann equation by analytical techniques and by numerical simulations such as the Monte Carlo method. The book also presents topics on quantum transport and spin effects in unidimensional molecular structures such as carbon nanotubes and graphene nanoribbons in terms of non-equilibrium Green’s function approaches and density functional theory.
This textbook gives a complete and fundamental introduction to the properties of III-V compound semiconductor devices, highlighting the theoretical and practical aspects of their device physics. Beginning with an introduction to the basics of semiconductor physics, it presents an overview of the physics and preparation of compound semiconductor materials, as well as a detailed look at the electrical and optical properties of compound semiconductor heterostructures. The book concludes with chapters dedicated to a number of heterostructure electronic and photonic devices, including the high-electron-mobility transistor, the heterojunction bipolar transistor, lasers, unipolar photonic devices, and integrated optoelectronic devices. Featuring chapter-end problems, suggested references for further reading, as well as clear, didactic schematics accompanied by six information-rich appendices, this textbook is ideal for graduate students in the areas of semiconductor physics or electrical engineering. In addition, up-to-date results from published research make this textbook especially well-suited as a self-study and reference guide for engineers and researchers in related industries.
Hands-on guide for scientists and engineers on how to use SQUID technology This practical book covers SQUID (superconducting quantum interference device) readout electronics and magnetometric systems. It illustrates their many practical applications in measuring extremely subtle magnetic fields and shows how the technique is developing into an enabling technology for many applications, such as biomagnetic imaging and geophysical prospecting. Clear and comprehensive, the book builds a bridge for scientists and engineers to fill in potential know-how gaps for all who work on SQUID systems and their practical applications. It helps make key words like readout electronics, flux quantization, Josephson effects, and noise contributions completely understandable to all who design and use simple and robust SQUID systems. Beginning with an introduction to the subject, SQUID Readout Electronics and Magnetometric Systems for Practical Applications offers in-depth chapter coverage of: Josephson junctions; dc SQUID's I-V characteristics and its bias modes; functions of the SQUID's readout electronics; direct readout scheme (DRS); SQUID magnetometry system and SQUID parameters; flux modulation scheme (FMS); and flux feedback concepts and parallel feedback circuit. Other sections examine: analyses of the "series feedback coil (circuit)" (SFC); weakly damped SQUID; two-stage and double relaxation oscillation readout schemes; and radio-frequency (rf) SQUID. - Provides a unique view of how simplicity and robustness are crucial for practical SQUID systems in applications - Focuses on the readout electronics of SQUID systems, particularly the advantages and disadvantages of the various systems - Helps materials scientists, physicists, and engineers overcome various major know-how barriers in order to understand the important challenges and to design practical SQUID systems - Largely documents the joint achievements accomplished in the cooperation between SIMIT and FZJ in the field of superconducting electronics SQUID Readout Electronics and Magnetometric Systems for Practical Applications is an excellent book for all materials scientists, electrical engineers, and physicists who can benefit from SQUID systems and their applications. It will also be of great benefit to analytical laboratories in industry, manufacturers of laboratory equipment, and systems engineers.
Sintering process studies have re-emerged strongly in the past decade due to extensive discussions about the stabilization of nanoparticles and nanostructures, and the development of controlled nanograined bulk materials. This book presents the state-of-art in experiments and theory of novel sintering processes, traditional sintering and grain growth. The scope ranges from powder metallurgy to ceramic and composites processing. The challenges of conventional and novel sintering and grain growth in nanopowders and nanostructures are addressed, being useful for students as well as professionals interested in sintering at the nanoscale.
This book covers the latest research on applications of nanomaterials in the field of energy systems and devices. It provides an overview of the state-of-art research in this rapidly developing field. It discusses the design and fabrication of nanostructured materials and their energy applications. Various topics covered include nanomaterials for perovskite solar cells, transition metal dichalcogenides (TMDs) nanocomposites based supercapacitors, battery materials and technologies, major challenges toward development of efficient thermoelectric materials for energy efficient devices, extraction and experimentation of biodiesel produced from leachate oils of landfills coupled with nano-additives aluminium oxide and copper oxide on diesel engine and many more. It has contributions from world-renowned specialists in the fields of nanomaterials and energy devices. The book will be useful for students, researchers and professionals working in the area of nanomaterials and energy systems & devices.
The quantum Hall effects remains one of the most important subjects to have emerged in condensed matter physics over the past 20 years. The fractional quantum Hall effect, in particular, has opened up a new paradigm in the study of strongly correlated electrons, and it has been shown that new concepts, such as fractional statistics, anyon, chiral Luttinger liquid and composite particles, are realized in two-dimensional electron systems. This book explains the quantum Hall effects together with these new concepts starting from elementary quantum mechanics. Thus, graduate students can use this book to gain an overall understanding of these phenomena.
In this book, the authors discuss some of the main challenges and new opportunities in science and engineering research, which involve combining computational and experimental approaches as a promising strategy for arriving at new insights into composition-structure-property relations, even at the nanoscale. From a practical standpoint, the authors show that significant improvements in the material/biomolecular foresight by design, including a fundamental understanding of their physical and chemical properties, are vital and will undoubtedly help us to reach a new technological level in the future.
The second edition of this introductory book sets out clearly and concisely the principles of operation of the semiconductor devices that lie at the heart of the microelectronic revolution. The book aims to teach the reader how semiconductor devices are modelled. It begins by providing a firm background in the relevant semiconductor physics. These ideas are then used to construct both circuit models and mathematical models for diodes, bipolar transistors and MOSFETs. It also describes the processes involved in fabricating silicon chips containing these devices. The first edition has already proved a highly useful textbook to first and second year degree students in electrical and electronic engineering, and related disciplines. It is also useful to HND students in similar subject areas, and as supplementary reading for anyone involved in integrated circuit design and fabrication.
This book merges theoretical and experimental works initiated in 1997 from consideration of periodical artificial dielectric structures comprising magneto-optical materials. Modern advances in magnetophotonics are discussed giving theoretical analyses and demonstrations of the consequences of light interaction with non-reciprocal media of various designs. This first collection of foundational works is devoted to light-to-artificial magnetic matter phenomena and related applications. The subject covers the physical background and the continuing research in the field of magnetophotonics.
Exploring such topics as materials, metals, bonding techniques, etching procedures and fabrication techniques, this book gives examples which should be comprehended by both technical and non-technical readers.
The book introduces scientists and graduate students to superconductivity, and highlights the differences arising from the different dimensionality of the sample under study. It focuses on transport in one-dimensional superconductors, describing relevant theories with particular emphasis on experimental results. It closely relates these results to the emergence of various novel fabrication techniques. The book closes by discussing future perspectives, and the connection and relevance to other physical systems, including superfluidity, Bose-Einstein condensates, and possibly cosmic strings.
The design of medical electronics is unique because of the
background needed by the engineers and scientists involved. Often
the designer is a medical or life science professional without any
training in electronics or design. Likewise, few engineers are
specifically trained in biomedical engineering and have little or
no exposure to the specific medical requirements of these devices.
Design of Medical Electronic Devices presents all essential topics
necessary for basic and advanced design. All aspects of the
electronics of medical devices are also covered. This is an
essential book for graduate students as well as professionals
involved in the design of medical equipment.
Polymer Electrolytes for Energy Storage Devices, Volume I, offers a detailed explanation of recent progress and challenges in polymer electrolyte research for energy storage devices. The influence of these electrolyte properties on the performance of different energy storage devices is discussed in detail. Features: * Discusses a variety of energy storage systems and their workings and a detailed history of LIBs * Covers a wide range of polymer-based electrolytes including PVdF, PVdF-co-HFP, PAN, blend polymeric systems, composite polymeric systems, and polymer ionic liquid gel electrolytes * Provides a comprehensive review of biopolymer electrolytes for energy storage applications * Suitable for readers with experience in batteries as well as newcomers to the field This book will be invaluable to researchers and engineers working on the development of next-generation energy storage devices, including materials, chemical, electrical, and mechanical engineers, as well as those involved in related disciplines.
This pioneering text explains how to synthesize digital diagnostic sequences for wire interconnects using boundary-scan, and how to assess the quality of those sequences. It takes a new approach, carefully modelling circuit and interconnect faults, and applying graph techniques to solve problems.
This volume contains the papers presented at the International Workshop on the Cur rent Problems in Condensed Matter: Theory and Experiment, held at Cocoyoc, More los, Mexico, during January 5-9, 1997. The participants had come from Argentina, Austria, Chile, England, France, Germany, Italy, Japan, Mexico, Switzerland, and the USA. The presentations at the Workshop provided state-of-art reviews of many of the most important problems, currently under study, in condensed matter. Equally important to all the participants in the workshop was the fact that we had come to honor a friend, Karl Heinz Bennemann, on his sixty-fifth birthday. This Festschrift is just a small measure of recognition of the intellectualleadership of Professor Bennemann in the field and equally important, as a sincere tribute to his qualities as an exceptional friend, college and mentor. Those who have had the privilege to work closely with Karl have been deeply touched by Karl's inquisitive scientific mind as well as by bis kindness and generosity."
Excellent bridge between general solid-state physics textbook and research articles packed with providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors "The most striking feature of the book is its modern outlook ... provides a wonderful foundation. The most wonderful feature is its efficient style of exposition ... an excellent book." Physics Today "Presents the theoretical derivations carefully and in detail and gives thorough discussions of the experimental results it presents. This makes it an excellent textbook both for learners and for more experienced researchers wishing to check facts. I have enjoyed reading it and strongly recommend it as a text for anyone working with semiconductors I know of no better text I am sure most semiconductor physicists will find this book useful and I recommend it to them." Contemporary Physics Offers much new material: an extensive appendix about the important and by now well-established, deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters." |
![]() ![]() You may like...
Quick & Easy Triangle Block Tool - Make…
Sheila Christensen
Paperback
Operator Theory and Harmonic Analysis…
Alexey N. Karapetyants, Vladislav V. Kravchenko, …
Hardcover
R6,433
Discovery Miles 64 330
|