Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials
This proceedings volume archives the contributions of the speakers who attended the NATO Advanced Research Workshop on "Science and Technology of Semiconductor-On-Insulator Structures and Devices Operating in a Harsh Environment" held at the Sanatorium Puscha Ozerna, th th Kyiv, Ukraine, from 25 to 29 April 2004. The semiconductor industry has maintained a very rapid growth during the last three decades through impressive technological achievements which have resulted in products with higher performance and lower cost per function. After many years of development semiconductor-on-insulator materials have entered volume production and will increasingly be used by the manufacturing industry. The wider use of semiconductor (especially silicon) on insulator materials will not only enable the benefits of these materials to be further demonstrated but, also, will drive down the cost of substrates which, in turn, will stimulate the development of other novel devices and applications. In itself this trend will encourage the promotion of the skills and ideas generated by researchers in the Former Soviet Union and Eastern Europe and their incorporation in future collaborations.
The investigation of nanosized ferroelectric films and ferroelectric nanocrystals has attracted much attention during the past 15 - 20 years. There is interest in the fundamental and applied aspects. The theoretical basis is connected with the development of the Landau-Ginzburg-Devonshire (LGD) mean field and the first principles theories to the ultrathin ferroelectric films with thickness in the vicinity of critical size. Important potential applications are possible nanosize ferroelectric films in non-volatile memories, microelectronics, sensors, pyroelectric and electro-optic devices. This new area of research of ferroelectricity is still in impetuous development and far from completion. Many topics elucidated need generalization. The book contains theory and experimental data for a wide range of ferroelectric materials.
Owing to their high-power density, long life and environmental compatibility, supercapacitors are emerging as one of the promising storage technologies but with challenges around energy and power requirements for specific applications. This book focusses on supercapacitors including details on classification, charge storage mechanisms, related kinetics, and thermodynamics. Materials used as electrodes, electrolytes and separators, and procedures followed, characterization methods and modeling are covered along with emphasis on related applications. Features: Provides an in-depth look at supercapacitors, including their working concepts, and design. Reviews detailed explanation of various characterization and modeling techniques. Give special focus to the application of supercapacitors in major areas of environmental as well as social importance. Covers Cyclic Voltammetry, Charging-Discharging Curves, and Electrochemical Impedance Spectroscopy as characterization techniques. Includes a detailed chapter on historical perspectives on evolution of supercapacitors. This book aims at researchers, and graduate students in materials science and engineering, nanotechnology, chemistry in batteries, and physics.
This book offers an overview of power electronic applications in the study of power integrated circuit (IC) design, collecting novel research ideas and insights into fast transient response to prevent the output voltage from dropping significantly at the undershoot. It also discusses techniques and training to save energy and increase load efficiency, as well as fast transient response and high efficiency, which are the most important factors for consumer products that implement power IC. Lastly, the book focuses on power electronics for system loop analysis and optimal compensation design to help users and engineers implement their applications. The book is a valuable resource for university researchers, power IC R&D engineers, application engineers and graduate students in power electronics who wish to learn about the power IC design principles, methods, system behavior, and applications in consumer products.
Amorphous silicon has enabled a new technology for large-area electronics, with major applications in liquid crystal displays, image sensing and solar power conversion. This book presents a broad description of the current technology and its future potential, so that the reader can understand how the particular properties of amorphous silicon lead to unique applications. Topics covered include the design of the amorphous silicon transistor and sensor devices, the range of matrix-addressed arrays and other systems that can be fabricated, and the performance of the various application areas.
Device Architecture and Materials for Organic Light-Emitting Devices focuses on the design of new device and material concepts for organic light-emitting devices, thereby targeting high current densities and an improved control of the triplet concentration. A new light-emitting device architecture, the OLED with field-effect electron transport, is demonstrated. This device is a hybrid between a diode and a field-effect transistor. Compared to conventional OLEDs, the metallic cathode is displaced by one to several micrometers from the light-emitting zone, reducing optical absorption losses. The electrons injected by the cathode accumulate at an organic heterojunction and are transported to the light-emission zone by field-effect. High mobilities for charge carriers are achieved in this way, enabling a high current density and a reduced number of charge carriers in the device. Pulsed excitation experiments show that pulses down to 1 us can be applied to this structure without affecting the light intensity, suggesting that pulsed excitation might be useful to reduce the accumulation of triplets in the device. The combination of all these properties makes the OLED with field-effect electron transport particularly interesting for waveguide devices and future electrically pumped lasers. In addition, triplet-emitter doped organic materials, as well as the use of triplet scavengers in conjugated polymers are investigated.
High temperature superconductors (HTS) offer many advantages
through their application in electrical systems, including high
efficiency performance and high throughput with low-electrical
losses. While cryogenic cooling and precision materials manufacture
is required to achieve this goal, cost reductions without
significant performance loss are being achieved through the
advanced design and development of HTS wires, cables and magnets,
along with improvements in manufacturing methods. This book
explores the fundamental principles, design and development of HTS
materials and their practical applications in energy systems.
Metal Impurities in Silicon-Device Fabrication treats the transition-metal impurities generated during the fabrication of silicon samples and devices. The different mechanisms responsible for contamination are discussed, and a survey is given of their impact on device performance. The specific properties of the main and rare impurities in silicon are examined, as well as the detection methods and requirements in modern technology. Finally, impurity gettering is studied along with modern techniques to determine the gettering efficiency. In all of these subjects, reliable and up-to-date data are presented. This monograph provides a thorough review of the results of recent scientific investigations, as well as the relevant data and properties of the various metal impurities in silicon. The new edition includes important recent data and a number of new tables.
This book describes the basic physical principles of techniques to generate and ultrashort pulse lasers and applications to ultrafast spectroscopy of various materials covering chemical molecular compounds, solid-state materials, exotic novel materials including topological materials, biological molecules and bio- and synthetic polymers. It introduces non-linear optics which provides the basics of generation and measurement of pulses and application examples of ultrafast spectroscopy to solid state physics. Also it provide not only material properties but also material processing procedures. The book describes also details of the world shortest visible laser and DUV lasers developed by the author's group. It is composed of the following 12 Sections: The special features of this book is that it is written by a single author with a few collaborators in a systematic way. Hence it provides a comprehensive and systematic description of the research field of ultrashort pulse lasers and ultrafast spectroscopy. Generation of ultrashort pulses in deep ultraviolet to near infrared Generation of ultrashort pulses in terahertz Carrier envelope phase (CEP) Simple NLO processes with a few colors Multi-color involved NLO processes Multi-color ultrashort pulse generation NLO materials NLO processes in time-resolved spectroscopy Low dimension materials Conductors and superconductors Chemical reactions and material processing Photobiological reactions
* Covers topics such as fundamentals of sensors and their working principles * Details recent materials and technologies used for flexible and wearable sensors * Covers emerging applications
This book comprehensively summarizes the recent achievements and trends in encapsulation of micro- and nanocontainers for applications in smart materials. It covers the fundamentals of processing and techniques for encapsulation with emphasis on preparation, properties, application, and future prospects of encapsulation process for smart applications in pharmaceuticals, textiles, biomedical, food packaging, composites, friction/wear, phase change materials, and coatings. Academics, researchers, scientists, engineers, and students in the field of smart materials will benefit from this book.
Uncertainty Quantification of Electromagnetic Devices, Circuits, and Systems describes the advances made over the last decade in the topic of uncertainty quantification (UQ) and stochastic analysis. The primary goal of the book is to educate and inform electronics engineers about the most recent numerical techniques, mathematical theories, and computational methods to perform UQ for electromagnetic devices, circuits, and systems. Importantly, the book offers an in-depth exploration of the recent explosion in surrogate modelling (metamodeling) techniques for numerically efficient UQ. Metamodeling has currently become the most attractive, numerically efficient, and popular approach for UQ. The book begins by introducing the concept of uncertainty quantification in electromagnetic device, circuit, and system simulation. Further chapters cover the theory and applications of polynomial chaos based uncertainty quantification in electrical engineering; dimension reduction strategies to address the curse of dimensionality in polynomial chaos; a predictor-corrector algorithm for fast polynomial chaos based statistical modeling of carbon nanotube interconnects; machine learning approaches towards uncertainty quantification; artificial neural network-based yield optimization with uncertainties in EM structural parameters; exploring order reduction clustering methods for uncertainty quantification of electromagnetic composite structures; and mixed epistemic-aleatory uncertainty using a new polynomial chaos formulation combined with machine learning. A final chapter provides concluding remarks and explores potential future directions for research in the field. The book will be a welcome resource for advanced students and researchers in electromagnetics and applied mathematical modelling who are working on electronic circuit and device design.
This book provides an up-to-date introduction to the field of functional thin films and materials, encompassing newly developed technologies and fundamental new concepts. The focus is on the critical areas of novel thin films such as sol gel synthesis of membrane, ferroelectric thin films and devices, functional nanostructured thin films, micromechanical analysis of fiber-reinforced composites, and novel applications. An important aspect of the book lies in its wide coverage of practical applications. It introduces not only the cutting-edge technologies in modern industry, but also unique applications in many rapidly advancing fields. This book is written for a wide readership including university students and researchers from diverse backgrounds such as physics, materials science, engineering and chemistry. Both undergraduate and graduate students will find it a valuable reference book on key topics related to solid state and materials science.
This is an introduction to noise, describing fundamental noise sources and basic circuit analysis, discussing characterization of low-frequency noise and offering practical advice that bridges concepts of noise theory and modelling, characterization, CMOS technology and circuits. The text offers the latest research, reviewing the most recent publications and conference presentations. The book concludes with an introduction to noise in analog/RF circuits and describes how low-frequency noise can affect these circuits.
This book highlights cutting-edge research in surface plasmons, discussing the different types and providing a comprehensive overview of their applications. Surface plasmons (SPs) receive special attention in nanoscience and nanotechnology due to their unique optical, electrical, magnetic, and catalytic properties when operating at the nanoscale. The excitation of SPs in metal nanostructures enables the manipulation of light beyond the diffraction limit, which can be utilized for enhancing and tailoring light-matter interactions and developing ultra-compact high-performance nanophotonic devices for various applications. With clear and understandable illustrations, tables, and descriptions, this book provides physicists, materials scientists, chemists, engineers, and their students with a fundamental understanding of surface plasmons and device applications as a basis for future developments.
Semiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world. The work is divided into three sections. The first section is
concerned with the fundamental physics of semiconductors, showing
how the electronic features and the lattice dynamics change
drastically when systems vary from bulk to a low-dimensional
structure and further to a nanometer size. Throughout this section
there is an emphasis on the full understanding of the underlying
physics. The second section deals largely with the transformation
of the conceptual framework of solid state physics into devices and
systems which require the growth of extremely high purity, nearly
defect-free bulk and epitaxial materials. The last section is
devoted to exploitation of the knowledge described in the previous
sections to highlight the spectrum of devices we see all around
us. Provides a comprehensive global picture of the semiconductor world Each of the work's three sections presents a complete description of one aspect of the whole Written and Edited by a truly international team of experts
This book offers a didactic introduction to light-matter interactions at both the classical and semi-classical levels. Pursuing an approach that describes the essential physics behind the functionality of any optical element, it acquaints students with the broad areas of optics and photonics. Its rigorous, bottom-up approach to the subject, using model systems ranging from individual atoms and simple molecules to crystalline and amorphous solids, gradually builds up the reader's familiarity and confidence with the subject matter. Throughout the book, the detailed mathematical treatment and examples of practical applications are accompanied by problems with worked-out solutions. In short, the book provides the most essential information for any graduate or advanced undergraduate student wishing to begin their course of study in the field of photonics, or to brush up on important concepts prior to an examination.
Introduces fundamentals of nanomaterials from renewable resources, including processing and characterization Covers nanomaterials for applications in food and packaging, including nanocellulose, lignin- and chitosan-based nanomaterials, and nanostarch Discusses applications in energy conservation, such as supercapacitors, electrolyte membranes, energy storage devices, and insulation Describes environmental uses such as water remediation and purification and oil spill clean-ups Highlights advantages and challenges in commercialization of green nanoparticle-based materials
This text discusses sigma- delta- type function circuits, peak detecting function circuits, and peak sampling function circuits in a detailed manner. It further covers all the function circuits designed by using the basic principles of the six building blocks: integrator, the 555 timer integrated circuit, switch, low pass fi lter, peak detector, and sample and hold circuit. It is a useful reference text for senior undergraduate and graduate students in the fi elds of electrical engineering and electronics and communication engineering. This book is accompanied by teaching resources, including a solution manual for the instructors. * Discusses function circuits such as multipliers, dividers, and multiplier cum dividers using the 555 timer. * Explains how function circuits are developed with a simple integrator and the 555 timer. * Extends the applications of 555 timers to perform in function circuits. * Covers important topics such as monostable multivibrator, inverting amplifi er, and peak responding divider. * Presents function circuit conversion such as multiplier to square root and divider to a multiplier. This comprehensive book covers the design of function circuits with the help of 555 timer integrated circuits in a single volume. It further discusses how derived function circuits are implemented with integrator, comparator, low pass fi lter, peak detector, and sample and hold circuits.
Over the years there has been a large increase in the functionality available on a single integrated circuit. This has been mainly achieved by a continuous drive towards smaller feature sizes, larger dies, and better packing efficiency. However, this greater functionality has also resulted in substantial increases in the capital investment needed to build fabrication facilities. Given such a high level of investment, it is critical for IC manufacturers to reduce manufacturing costs and get a better return on their investment. The most obvious method of reducing the manufacturing cost per die is to improve manufacturing yield. Modern VLSI research and engineering (which includes design manufacturing and testing) encompasses a very broad range of disciplines such as chemistry, physics, material science, circuit design, mathematics and computer science. Due to this diversity, the VLSI arena has become fractured into a number of separate sub-domains with little or no interaction between them. This is the case with the relationships between testing and manufacturing. From Contamination to Defects, Faults and Yield Loss: Simulation and Applications focuses on the core of the interface between manufacturing and testing, i.e., the contamination-defect-fault relationship. The understanding of this relationship can lead to better solutions of many manufacturing and testing problems. Failure mechanism models are developed and presented which can be used to accurately estimate probability of different failures for a given IC. This information is critical in solving key yield-related applications such as failure analysis, fault modeling and design manufacturing.
The 2001 Dutch Sensor Conference held on 14 -15 May 2001, at the University of Twente in Enschede, The Netherlands, is the fourth in a series ofmeetings. The conference is initiated by the Dutch Technology Foundation (STW) in order to stimulate the industrial application ofsensor research. This MESA Monograph contains a collection oflatest research and development from all major Dutch centers ofsensor research and aspect ofsensor commercialization. Thus it provides an excellent overview ofthe state ofthe art ofDutch Sensor Technology in the new millennium. I should like to acknowledge the work ofthe program committee, the local organizing committee and, ofcourse, the contributors to this volume. All ofthem made the conference a success. Prof. Dr. Miko Elwenspoek Conference Chairman Program Committee: M. Elwenspoek (Chairman) (MESA+) A.van den Berg (MESA+) PJ. French (TV Delft) P.V. Lambeck (MESA+) H. Leeuwis (3T) J.c. Lotters (Bronkhorst) HAC. Tilmans (IMEC) Contents MEASUREMENT SYSTEM FOR BIOCHEMICAL ANALYSIS BASED 1 ON CAPILLARY ELECTROPHORESIS AND MICROSCALE CONDUCTIVITY DETECTION F. Laugere, A. Berthold, R.M Guijt, E. Baltussen, J. Bastemeijer, P.M Sarro, MJ. Vellekoop ELECTRO-OSMOTIC FLOW CONTROL IN MICROFLUIDICS 7 SYSTEMS R.E. Oosterbroek, MH. Goedbloed, A. Trautmann, N.J. van der Veen, S Schlautmann, 1.W Berenschot, A. van den Berg FLOW SENSING USING THE TEMPERATURE DISTRIBUTION 13 ALONG A HEATED MICROBEAM J.J. van Baar, RJ Wiegerink, GJM Krijnen, T.SJ. Lammerink, M.
In recent years, ever more electronic devices have started to exploit the advantages of organic semiconductors. The work reported in this thesis focuses on analyzing theoretically the energy level alignment of different metal/organic interfaces, necessary to tailor devices with good performance. Traditional methods based on density functional theory (DFT), are not appropriate for analyzing them because they underestimate the organic energy gap and fail to correctly describe the van der Waals forces. Since the size of these systems prohibits the use of more accurate methods, corrections to those DFT drawbacks are desirable. In this work a combination of a standard DFT calculation with the inclusion of the charging energy (U) of the molecule, calculated from first principles, is presented. Regarding the dispersion forces, incorrect long range interaction is substituted by a van der Waals potential. With these corrections, the C60, benzene, pentacene, TTF and TCNQ/Au(111) interfaces are analyzed, both for single molecules and for a monolayer. The results validate the induced density of interface states model.
The investigation of light-matter interactions in materials, especially those on the nanoscale, represents perhaps the most promising avenue for scientific progress in the fields of photonics and plasmonics. This book examines a variety of topics, starting from fundamental principles, leading to the current state of the art research. For example, this volume includes a chapter on the sensing of biological molecules with optical resonators (microspheres) combined with plasmonic systems, where the response this system are described in a fundamental and elegant manner using coupled mode theory. Symmetry plays a major role in the book. One chapter on time reversal symmetry in electromagnetic theory describes how to control the properties of light (e.g. scattering and directionality of the flow of light) in materials with certain topological invariants. Another chapter where symmetry is prominent reformulates, using a gentle and pedagogical approach, Maxwell's Equations into a new set of fields that reveal a "handedness" symmetry in electromagnetic theory, which can be applied to photonic systems in, for example, the sensing of chiral molecules and understanding the conditions for zero reflection. Also, for students and researchers starting in the field of nanoplasmonics, the book includes a tutorial on the finite element time domain simulation of nanoplasmonic systems. Other topics include photonic systems for quantum computing, nanoplasmonics, and optical properties of nano and bulk materials. The authors take a pedagogical approach to their topic, making the book an excellent reference for graduate students and scientists starting in the fields of photonics or plasmonics.
GaAs on Si: Device Applications.- Substrate Considerations.- Majority-Carrier Devices.- Minority-Carrier Devices.- Conclusions.- Ion Beam Synthesis in Silicon.- The Ion Implantation Process.- Buried SiO2 Layers in Si.- Buried Monocrystalline CoSi2 Layers in Si.- Conclusions.- Ion Beam Processing of Chemical Vapor Deposited Silicon Layers.- Ion Beam Effects.- Epitaxy of Deposited Layers.- Polycrystal Formation.- Technology and Devices for Silicon Based Three-Dimensional Circuits.- 3D-Technology.- Device Characteristics.- Features of 3D-Circuits.- Demonstrators.- Conclusions.- Integrated Fabrication of Micromechanical Structures on Silicon.- Mechanical Properties of Silicon.- Thermal Properties.- Fabrication Techniques.- Etching.- Anisotropic Etching.- Boron Doped Etch Stop.- Electrochemical Etch Stop.- Embedded Layers.- Surface Microstructures.- Bonding of Layers.- Electrostatic Bonding.- Oxide Bonding.- Bonding to Metals.- Conclusion.- Micromachining of Silicon for Sensors.- Physical Properties of Silicon.- Transduction Techniques.- Fabrication Techniques.- Pressure Sensors.- Accelerometers.- Microresonator Sensors.- Optical Microresonator Sensors.- Conclusions.- Micromachining of Silicon for Sensors.- Hybrid or Monolithic Approach for optoelectronics: That is the question.- About the Hybrid Approach Material Competitors.- Silicon Based Technologies developed at LETI.- Planar and Channel waveguide Properties of IOS Technologies.- Field of Activities.- Integrated Optical Spectrum Analyser (IOSA).- Integrated Optical Sensors.- Optical Communication Applications.- Optical Memories.- Conclusion.- Principles and Implementation of Artificial Neural Networks.- Binary Networks.- Analog Networks.- Miscellaneous Networks.- Future VLSI Networks.- Conclusions.- List of Participants.
This book systematically introduces modeling, performance evaluation and applications of Automatic Materiel Handling System (AMHS) in semiconductor manufactucing, and focuses discussion on the coordination of two subsystems. Resources dispatch and optimization are conducted on operational research combined with cases studies. Written in a practical way, it is an essential reference for researchers and engineers in manufacturing and management. |
You may like...
Vibration Engineering and Technology of…
Jose-Manoel Balthazar
Hardcover
R5,508
Discovery Miles 55 080
New Advances in Semiconductors
Alberto Adriano Cavalheiro
Hardcover
Polyimide for Electronic and Electrical…
Sombel Diaham
Hardcover
Linear and Nonlinear Optical Responses…
Miguel Ãngel Sánchez MartÃnez
Hardcover
R4,251
Discovery Miles 42 510
|