![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials
This contributed volume offers practical solutions and design-, modeling-, and implementation-related insights that address current research problems in memristors, memristive devices, and memristor computing. The book studies and addresses related challenges in and proposes solutions for the future of memristor computing. State-of-the-art research on memristor modeling, memristive interconnections, memory circuit architectures, software simulation tools, and applications of memristors in computing are presented. Utilising contributions from numerous experts in the field, written in clear language and illustrated throughout, this book is a comprehensive reference work. Memristor Computing Systems explains memristors and memristive devices in an accessible way for graduate students and researchers with a basic knowledge of electrical and control systems engineering, as well as prompting further research for more experienced academics.
This open access book presents research and evaluation results of the Austrian flagship project "Connecting Austria," illustrating the wide range of research needs and questions that arise when semi-automated truck platooning is deployed in Austria. The work presented is introduced in the context of work in similar research areas around the world. This interdisciplinary research effort considers aspects of engineering, road-vehicle and infrastructure technologies, traffic management and optimization, traffic safety, and psychology, as well as potential economic effects. The book's broad perspective means that readers interested in current and state-of-the-art methods and techniques for the realization of semi-automated driving and with either an engineering background or with a less technical background gain a comprehensive picture of this important subject. The contributors address many questions such as: Which maneuvers does a platoon typically have to carry out, and how? How can platoons be integrated seamlessly in the traffic flow without becoming an obstacle to individual road users? What trade-offs between system information (sensors, communication effort, etc.) and efficiency are realistic? How can intersections be passed by a platoon in an intelligent fashion? Consideration of diverse disciplines and highlighting their meaning for semi-automated truck platooning, together with the highlighting of necessary research and evaluation patterns to address such a broad task scientifically, makes Energy-Efficient and Semi-automated Truck Platooning a unique contribution with methods that can be extended and adapted beyond the geographical area of the research reported.
In this book, the fundamentals of magnetism are treated, starting at an introductory level. The origin of magnetic moments, the response to an applied magnetic field, and the various interactions giving rise to different types of magnetic ordering in solids are presented and many examples are given. Crystalline-electric-field effects are treated at a level that is sufficient to provide the basic knowledge necessary in understanding the properties of materials in which these effects play a role. Itinerant-electron magnetism is presented on a similar basis. Particular attention has been given to magnetocrystalline magnetic anisotropy and the magnetocaloric effect. Also, the usual techniques for magnetic measurements are presented. About half of the book is devoted to magnetic materials and the properties that make them suitable for numerous applications. The state of the art is presented of permanent magnets, high-density recording materials, soft-magnetic materials, Invar alloys and magnetostrictive materials. Many references are given.
Now in a thoroughly revised second edition, this practical practitioner guide provides a comprehensive overview of the SoC design process. It explains end-to-end system on chip (SoC) design processes and includes updated coverage of design methodology, the design environment, EDA tool flow, design decisions, choice of design intellectual property (IP) cores, sign-off procedures, and design infrastructure requirements. The second edition provides new information on SOC trends and updated design cases. Coverage also includes critical advanced guidance on the latest UPF-based low power design flow, challenges of deep submicron technologies, and 3D design fundamentals, which will prepare the readers for the challenges of working at the nanotechnology scale. A Practical Approach to VLSI System on Chip (SoC) Design: A Comprehensive Guide, Second Edition provides engineers who aspire to become VLSI designers with all the necessary information and details of EDA tools. It will be a valuable professional reference for those working on VLSI design and verification portfolios in complex SoC designs
This book focuses on complex shaped micro- and nanostructures for future biomedical and sensing applications that were investigated by both theory and experiments. The first part of the book explores rotation-translation coupling of artificial microswimmers at low Reynolds numbers. Usually corkscrew shapes, i.e chiral shapes, are considered in such experiments, due to their inspiration from nature. However, the analysis of the relevant symmetries shows that achiral objects can also be propulsive, which is experimentally demonstrated for the first time. In the second part, a new single-particle spectroscopy technique was developed and the role of symmetry in such measurements is carefully examined. Spectra stemming from one individual nanoparticle that is moving freely in bulk solution, away from a surface, and only due to Brownian motion, are presented. On that basis, the rotationally averaged chiroptical spectrum of a single nanoparticle is measured - a novel observable that has not been accessible before.
Polycrystalline Silicon for Integrated Circuits and Displays, Second Edition presents much of the available knowledge about polysilicon. It represents an effort to interrelate the deposition, properties, and applications of polysilicon. By properly understanding the properties of polycrystalline silicon and their relation to the deposition conditions, polysilicon can be designed to ensure optimum device and integrated-circuit performance. Polycrystalline silicon has played an important role in integrated-circuit technology for two decades. It was first used in self-aligned, silicon-gate, MOS ICs to reduce capacitance and improve circuit speed. In addition to this dominant use, polysilicon is now also included in virtually all modern bipolar ICs, where it improves the basic physics of device operation. The compatibility of polycrystalline silicon with subsequent high-temperature processing allows its efficient integration into advanced IC processes. This compatibility also permits polysilicon to be used early in the fabrication process for trench isolation and dynamic random-access-memory (DRAM) storage capacitors. In addition to its integrated-circuit applications, polysilicon is becoming vital as the active layer in the channel of thin-film transistors in place of amorphous silicon. When polysilicon thin-film transistors are used in advanced active-matrix displays, the peripheral circuitry can be integrated into the same substrate as the pixel transistors. Recently, polysilicon has been used in the emerging field of microelectromechanical systems (MEMS), especially for microsensors and microactuators. In these devices, the mechanical properties, especially the stress in the polysilicon film, are critical to successful device fabrication. Polycrystalline Silicon for Integrated Circuits and Displays, Second Edition is an invaluable reference for professionals and technicians working with polycrystalline silicon in the integrated circuit and display industries.
For the near future, the recent predictions and roadmaps of silicon semiconductor technology all agree that the number of transistors on a chip will keep growing exponentially according to Moore's Law, pushing technology towards the system-on-a-chip (SOC) era. However, we are increasingly experiencing a productivity gap where the chip complexity that can be handled by current design teams falls short of the possibilities offered by technological advances. Together with growing time-to-market pressures, this drives the need for innovative measures to increase design productivity by orders of magnitude. It is commonly agreed that the solutions for achieving such a leap in design productivity lie in a shift of the focus of the design process to higher levels of abstraction on the one hand and in the massive reuse of predesigned, complex system components (intellectual property, IP) on the other hand. In order to be successful, both concepts eventually require the adoption of new languages and methodologies for system design, backed-up by the availability of a corresponding set of system-level design automation tools. This book presents the SpecC system-level design language (SLDL) and the corresponding SpecC design methodology. The SpecC language is intended for specification and design of SOCs or embedded systems including software and hardware, whether using fixed platforms, integrating systems from different IPs, or synthesizing the system blocks from programming or hardware description languages. SpecC Specification Language and Methodology describes the SpecC methodology that leads designers from an executable specification to an RTL implementation through a well-defined sequence of steps. Each model is described and guidelines are given for generating these models from executable specifications. Finally, the SpecC methodology is demonstrated on an industrial-size example. The design community is now entering the system level of abstraction era and SpecC is the enabling element to achieve a paradigm shift in design culture needed for system/product design and manufacturing. SpecC Specification Language and Methodology will be of interest to researchers, designers, and managers dealing with system-level design, design flows and methodologies as well as students learning system specification, modeling and design.
This concise volume contains the key papers presented during the International NATO Advanced Research Workshop on Silicon on Insulator device technologies. The authors have moved beyond reporting the current state of the technology to explore wider issues, from the economic aspects incorporating SOI and related materials into circuits and systems to consideration of low temperature electronics, quantum devices and MEMS.
This book provides an overview of the use of nanoparticles, carbon-nanotubes, liposomes, and nanopatterned flat surfaces for specific biomedical applications. This book explains the chemical and physical properties of the surface of these materials that allow their use in diagnosis, biosensing and bioimaging devices, drug delivery systems, and bone substitute implants. The toxicology of these particles is also discussed in the light of a new field referred to as nanotoxicology in this book. This book will be useful for engineers, researchers and industry professionals primarily in the fields of polymer science and engineering, materials science, surface science, nanocatalysis, biotechnology and biomedicine.
Macromolecular self-assembly - driven by weak, non-covalent, intermolecular forces - is a common principle of structure formation in natural and synthetic organic materials. The variability in material arrangement on the nanometre length scale makes this an ideal way of matching the structure-function demands of photonic and optoelectronic devices. However, suitable soft matter systems typically lack the appropriate photoactivity, conductivity or chemically stability. This thesis explores the implementation of soft matter design principles for inorganic thin film nanoarchitectures. Sacrificial block copolymers and colloids are employed as structure-directing agents for the co-assembly of solution-based inorganic materials, such as TiO_2 and SiO_2. Novel fabrication and characterization methods allow unprecedented control of material formation on the 10 - 500 nm length scale, allowing the design of material architectures with interesting photonic and optoelectronic properties.
The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc. are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of superconductor, specimen size and electric field strength. Recent developments of critical current properties in various high-Tc superconductors and MgB2 are introduced. Other topics are: singularity in the case of transport current in a parallel magnetic field such as deviation from the Josephson relation, reversible flux motion inside pinning potentials which causes deviation from the critical state model prediction, the concept of the minimization of energy dissipation in the flux pinning phenomena which gives the basis for the critical state model, etc. Significant reduction in the AC loss in AC wires with very fine filaments originates from the reversible flux motion which is dominant in the two-dimensional pinning. The concept of minimum energy dissipation explains also the behavior of flux bundle size which determines the irreversibility line under the flux creep. The new edition has been thoroughly updated, with new sections on the progress in enhancing the critical current density in high temperature superconductors by introduction of artificial pinning centers, the effect of packing density on the critical current density and irreversibility field in MgB2 and derivation of the force-balance equation from the minimization of the free energy including the pinning energy.
This book focuses on the photoelectric nanodevices based on carbon nanostructures, such as carbon nanotubes, graphene and related heterojunctions. The synthesis of carbon nanostructures and device fabrication are simply given. The interface charge transfer and the performance enhancement in the photodetectors and solar cells are comprehensively introduced. Importantly, carbon allotropes behave as high-mobility conductors or bandgap-tunable semiconductors depending on the atomic arrangements, the direct motivation is to fabricate all-carbon nanodevices using these carbon nanomaterials as building blocks. The photoelectric nanodevices based on all-carbon nanostructures have increasingly attracted attention in the future. The book offers a valuable reference guide to carbon-based photoelectric devices for researchers and graduate school students in the field. It will also benefit all researchers who investigate photoelectric nanodevices and photoelectric conversion with relevant frontier theories and concepts.
This book presents the latest theoretical studies giving new predictions and interpretations on the quantum correlation in molecular dynamics induced by ultrashort laser pulses. The author quantifies the amount of correlation in terms of entanglement by employing methods developed in quantum information science, in particular applied to the photoionization of a hydrogen molecule. It is also revealed that the photoelectron-ion correlation affects the vibrational dynamics of the molecular ion and induces the attosecond-level time delay in the molecular vibration. Furthermore, the book also presents how molecular vibration can couple to photons in a plasmoic nanocavity. Physicists and chemists interested in the ultrafast molecular dynamics would be the most relevant readers. They can learn how we can employ the quantum-information-science tools to understand the correlation in the molecular dynamics and why we should consider the correlation between the photoelectron and the molecular ion to describe the ion's dynamics. They can also learn how to treat a molecule coupled to photons in a nanocavity. All the topics are related to the state-of-the-art experiments, and so, it is important to publish these results to enhance the understanding and to induce new experiments to confirm the theory presented.
Quantum Materials, Devices, and Applications covers the advances made in quantum technologies, both in research and mass production for applications in electronics, photonics, sensing, biomedical, environmental and agricultural applications. The book includes new materials, new device structures that are commercially available, and many more at the advanced research stage. It reviews the most relevant, current and emerging materials and device structures, organized by key applications and covers existing devices, technologies and future possibilities within a common framework of high-performance quantum devices. This book will be ideal for researchers and practitioners in academia, industry and those in materials science and engineering, electrical engineering and physics disciplines.
This book explains reliability techniques with examples from electronics design for the benefit of engineers. It presents the application of de-rating, FMEA, overstress analyses and reliability improvement tests for designing reliable electronic equipment. Adequate information is provided for designing computerized reliability database system to support the application of the techniques by designers. Pedantic terms and the associated mathematics of reliability engineering discipline are excluded for the benefit of comprehensiveness and practical applications. This book offers excellent support for electrical and electronics engineering students and professionals, bridging academic curriculum with industrial expectations.
Fully-depleted SOI CMOS Circuits and Technology for Ultralow-Power Applications addresses the problem of reducing the supply voltage of conventional circuits for ultralow-power operation and explains power-efficient MTCMOS circuit design for FD-SOI devices at a supply voltage of 0.5 V. The topics include the minimum required knowledge of the fabrication of SOI substrates; FD-SOI devices and the latest developments in device and process technologies; and ultralow-voltage circuits, such as digital circuits, analog/RF circuits, and DC-DC converters. Each ultra-low-power technique related to devices and circuits is fully explained using figures to help understanding.
In this thesis, the pseudogap and the precursor superconducting state, which are of great importance in clarifying the superconductivity mechanism in high-temperature cuprate superconductors, are investigated with a c-axis optical study in YBa2(Cu1-xZnx)3Oy. Testing was performed over a wide energy range with smaller temperature intervals for several Zn-substituted samples, as well as for several carrier-doping levels. A spectral weight (SW) analysis, in which the pseudogap behavior can be separated from the superconducting condensate with the SW transfer to the high-energy region, revealed that the pseudogap is not the precursor of the superconductivity (carriers moving to the high-energy region with pseudogap opening never contribute to the superconducting condensation). Moreover, the high-energy transfer continues even below Tc for the Zn-substituted samples (in which we weaken the superconductivity), which gives evidence to the coexistence of the pseudogap and the superconducting gap below Tc. On the other hand, the analysis of optical conductivity revealed that a precursor state to superconductivity can be defined at temperatures much higher than Tc. The superconducting carrier density (ns) was calculated for each temperature (above and below Tc) and the results confirmed the existence of ns at temperatures above Tc. The observed real superconducting condensate (ns) above Tc puts a serious constraint on the theory for high- Tc superconductivity. A theory based on an inhomogeneous superconducting state, in which a microscopically phase-separated state in a doped Mott insulator can be observed, is the most plausible candidate. This theory can explain the existence of ns and the observed temperature range for the precursor superconducting state. The results obtained show that the pseudogap coexists with superconductivity below Tc and is not the precursor of superconductivity. On the other hand, it is also possible to define a precursor superconducting state that is different than the pseudogap. The temperature range and the observed superconducting condensate in this state can be explained with the help of the inhomogeneous superconducting state.
This book reflects the current status of theoretical and experimental research of graphene based nanostructures, in particular quantum dots, at a level accessible to young researchers, graduate students, experimentalists and theorists. It presents the current state of research of graphene quantum dots, a single or few monolayer thick islands of graphene. It introduces the reader to the electronic and optical properties of graphite, intercalated graphite and graphene, including Dirac fermions, Berry's phase associated with sublattices and valley degeneracy, covers single particle properties of graphene quantum dots, electron-electron interaction, magnetic properties and optical properties of gated graphene nanostructures. The electronic, optical and magnetic properties of the graphene quantum dots as a function of size, shape, type of edge and carrier density are considered. Special attention is paid to the understanding of edges and the emergence of edge states for zigzag edges. Atomistic tight binding and effective mass approaches to single particle calculations are performed. Furthermore, the theoretical and numerical treatment of electron-electron interactions at the mean-field, HF, DFT and configuration-interaction level is described in detail.
The Workshop on Physics and Application of Non-crystalline Semiconductors in Optoelectronics was held from 15 to 17 October 1996 in Chisinau. republic of Moldova and was devoted to the problems of non-crystalline semiconducting materials. The reports covered two mjlin topics: theoretical basis of physics of non -crystalline materials and experimental results. In the framework of these major topics there were treated many subjects. concerning the physics of non-crystalline semiconductors and their specific application: -optical properties of non-crystalline semiconductors; -doping of glassy semiconductors and photoinduced effects in chalcogenide glasses and their application for practical purposes; -methods for investigation of the structure in non-crystalline semiconductors -new glassy materials for IR trasmittance and optoelectronics. Reports and communications were presented on various aspects of the theory. new physical principles. studies of the atomic structure. search and development of optoelectronics devices. Special attention was paid to the actual subject of photoinduced transformations and its applications. Experimental investigations covered a rather wide spectrum of materials and physical phenomena. As a novel item it is worth to mention the study of nonlinear optical effects in amorphous semiconducting films. The third order optical non linearities. fast photoinduced optical absorption and refraction. acusto-optic effects recently discovered in non-crystalline semiconductors could potentially be utilised for optical signal processing. The important problems of photoinduced structural transformations and related phenomena. which are very attractive and actual both from the scientific and practical points of view. received much attention in discussions at the conference."
This book presents posits a solution to the current limitations in global connectivity by introducing a global laser/optical communication system using constellation satellites, UAVs, HAPs and Balloons. The author outlines how this will help to satisfy the tremendous increasing demand for data exchange and information between end-users worldwide including in remote locations. The book provides both fundamentals and the advanced technology development in establishing worldwide communication and global connectivity using, (I) All-Optical technology, and (ii) Laser/Optical Communication Constellation Satellites (of different types, sizes and at different orbits), UAVs, HAPs (High Altitude Platforms) and Balloons. The book discusses step-by-step methods to develop a satellite backbone in order to interconnect a number of ground nodes clustered within a few SD-WAN (software-defined networking) in a wide area network (WAN) around the world in order to provide a fully-meshed communication network. This book pertains to anyone in optical communications, telecommunications, and system engineers, as well as technical managers in the aerospace industry and the graduate students, and researchers in academia and research laboratory. Proposed a solution to the limitations in global connectivity through a global laser/optical communication system using constellation satellites, UAVs, HAPs and Balloons; Provides both fundamentals and the advanced technology development in establishing global communication connectivity using optical technology and communication constellation satellites; Includes in-depth coverage of the basics of laser/optical communication constellation satellites.
In fabrication of FeRAMs, various academic and technological backgrounds are necessary, which include ferroelectric materials, thin film formation, device physics, circuit design, and so on. This book covers from fundamentals to applications of ferroelectric random access memories (FeRAMs). The book consists of 5 parts: (1) ferroelectric thin films, (2) deposition and characterization methods, (3) fabrication process and circuit design, (4) advanced-type memories, and (5) applications and future prospects; each part is further divided into several chapters. Because of the wide range of topics discussed, each chapter in this book was written by one of the best authors knowing the specific topic very well. Thus, this is a good introductory book on FeRAM for graduate students and newcomers to this field; it also helps specialists to understand FeRAMs more deeply.
For the efficient utilization of energy resources and the minimization of environmental damage, thermoelectric materials can play an important role by converting waste heat into electricity directly. Nanostructured thermoelectric materials have received much attention recently due to the potential for enhanced properties associated with size effects and quantum confinement. "Nanoscale Thermoelectrics" describes the theory underlying these phenomena, as well as various thermoelectric materials and nanostructures such as carbon nanotubes, SiGe nanowires, and graphene nanoribbons. Chapters written by leading scientists throughout the world are intended to create a fundamental bridge between thermoelectrics and nanotechnology, and to stimulate readers' interest in developing new types of thermoelectric materials and devices for power generation and other applications. "Nanoscale Thermoelectrics" is both a comprehensive introduction to the field and a guide to further research, and can be recommended for Physics, Electrical Engineering, and Materials Science departments. |
![]() ![]() You may like...
Kuhkomossonuk Akonutomuwinokot - Stories…
Wayne A Newell, Robert M. Leavitt
Hardcover
R762
Discovery Miles 7 620
An Invitation to Quantum Cohomology…
Joachim Kock, Israel Vainsencher
Hardcover
R2,479
Discovery Miles 24 790
Morphodynamic Model for Predicting Beach…
Takaaki Uda, Masumi Serizawa, …
Hardcover
R3,345
Discovery Miles 33 450
|