![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials
This book presents a variety of techniques using high-frequency (RF) and time-domain measurements to understand the electrical performance of novel, modern transistors made of materials such as graphene, carbon nanotubes, and silicon-on-insulator, and using new transistor structures. The author explains how to use conventional RF and time- domain measurements to characterize the performance of the transistors. In addition, he explains how novel transistors may be subject to effects such as self-heating, period-dependent output, non-linearity, susceptibility to short-term degradation, DC-invisible structural defects, and a different response to DC and transient inputs. Readers will understand that in order to fully understand and characterize the behavior of a novel transistor, there is an arsenal of dynamic techniques available. In addition to abstract concepts, the reader will learn of practical tips required to achieve meaningful measurements, and will understand the relationship between these measurements and traditional, conventional DC characteristics.
The quantum statistical properties of the light wave generated in a semiconductor laser or a light-emitting diode (LED) has been a field of intense research for more than a decade. This research monograph discusses recent research activities in nonclassical light generation based on semiconductor devices. This volume is composed of four major parts. The first discusses the generation of sub-shot-noise light in macroscopic pn junction light-emitting devices, including semiconductor laser and light-emitting diodes. The second part discusses the application of squeezed light in high-precision measurement, including spectroscopy and interferometry. The third part addresses the Coulomb blockade effect in a mesoscopic pn junction and the generation of single photon states. The last part covers the detection of single photons using a visible light photon counter.
This book presents an important technique to process organic photovoltaic devices. The basics, materials aspects and manufacturing of photovoltaic devices with solution processing are explained. Solution processable organic solar cells - polymer or solution processable small molecules - have the potential to significantly reduce the costs for solar electricity and energy payback time due to the low material costs for the cells, low cost and fast fabrication processes (ambient, roll-to-roll), high material utilization etc. In addition, organic photovoltaics (OPV) also provides attractive properties like flexibility, colorful displays and transparency which could open new market opportunities. The material and device innovations lead to improved efficiency by 8% for organic photovoltaic solar cells, compared to 4% in 2005. Both academic and industry research have significant interest in the development of this technology. This book gives an overview of the booming technology, focusing on the solution process for organic solar cells and provides a state-of-the-art report of the latest developments. World class experts cover fundamental, materials, devices and manufacturing technology of OPV technology.
MCMs today consist of complex and dense VLSI devices mounted into packages that allow little physical access to internal nodes. The complexity and cost associated with their test and diagnosis are major obstacles to their use. Multi-Chip Module Test Strategies presents state-of-the-art test strategies for MCMs. This volume of original research is designed for engineers interested in practical implementations of MCM test solutions and for designers looking for leading edge test and design-for-testability solutions for their next designs. Multi-Chip Module Test Strategies consists of eight contributions by leading researchers. It is designed to provide a comprehensive and well-balanced coverage of the MCM test domain. Multi-Chip Module Test Strategies has also been published as a special issue of the Journal of Electronic Testing: Theory and Applications (JETTA, Volume 10, Numbers 1 and 2).
The unique electronic band structure of graphene gives rise to remarkable properties when in contact with a superconducting electrode. In this thesis two main aspects of these junctions are analyzed: the induced superconducting proximity effect and the non-local transport properties in multi-terminal devices. For this purpose specific models are developed and studied using Green function techniques, which allow us to take into account the detailed microscopic structure of the graphene-superconductor interface. It is shown that these junctions are characterized by the appearance of bound states at subgap energies which are localized at the interface region. Furthermore it is shown that graphene-supercondutor-graphene junctions can be used to favor the splitting of Cooper pairs for the generation of non-locally entangled electron pairs. Finally, using similar techniques the thesis analyzes the transport properties of carbon nanotube devices coupled with superconducting electrodes and in graphene superlattices.
This book bridges a gap between two major communities of Condensed Matter Physics, Semiconductors and Superconductors, that have thrived independently. Through an original perspective that their key particles, excitons and Cooper pairs, are composite bosons, the authors raise fundamental questions of current interest: how does the Pauli exclusion principle wield its power on the fermionic components of bosonic particles at a microscopic level and how this affects the macroscopic physics? What can we learn from Wannier and Frenkel excitons and from Cooper pairs that helps us understand "bosonic condensation" of composite bosons and its difference from Bose-Einstein condensation of elementary bosons? The authors start from solid mathematical and physical foundation to derive excitons and Cooper pairs. They further introduce Shiva diagrams as a graphic support to grasp the many-body physics induced by fermion exchange - a novel mechanism not visualized by standard Feynman diagrams. Advanced undergraduate or graduate students in physics with no prior background will benefit from this book. The developed concepts and methodology should also be useful to present researches on ultracold atomic gases, exciton-polaritons, and quantum information.
Providing an important link between the theoretical knowledge in the field of non-linier physics and practical application problems in microelectronics, the purpose of the book is popularization of the physical approach for reliability assurance. Another unique aspect of the book is the coverage given to the role of local structural defects, their mathematical description, and their impact on the reliability of the semiconductor devices.
Integrated circuits are expected to increase their speed and power dramatically and rapidly. New packaging techniques are required if the devices are to remain within cost and size constraints. The present volume addresses new hermetic packaging, new materials for thermal management and assembly, and new components that integrate multiple functions (embedded substrates and component arrays), while retaining previous high levels of reliability. The book embraces many developments in fundamental materials science and manufacturing processes of discrete components, as well as developments in high speed, high integration packaging and more complex embedded component technologies.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
This book covers several of the most important topics of current interest at the forefront of scanning probe microscopy. These include a realistic theory of atom-resolving atomic force microscopy (AFM), fundamentals of MBE growth of III-V compound semiconductors and atomic manipulation for future single-electron devices.
This classroom-tested textbook is a modern primer on the rapidly developing field of quantum nano optics which investigates the optical properties of nanosized materials. The essentials of both classical and quantum optics are presented before embarking through a stimulating selection of further topics, such as various plasmonic phenomena, thermal effects, open quantum systems, and photon noise. Didactic and thorough in style, and requiring only basic knowledge of classical electrodynamics, the text provides all further physics background and additional mathematical and computational tools in a self-contained way. Numerous end-of-chapter exercises allow students to apply and test their understanding of the chapter topics and to refine their problem-solving techniques.
This book describes the theory and design of high-accuracy CMOS smart temperature sensors. The major topic of the work is the realization of a smart temperature sensor that has an accuracy that is so high that it can be applied without any form of calibration. Integrated in a low-cost CMOS technology, this yields at the publication date of this book one of the most inexpensive intelligent general purpose temperature sensors in the world. The first thermometers could only be read by the human eye. The industrial revolution and the following computerization asked for more intelligent sensors, which could easily communicate to digital computers. This led to. the development of integrated temperature sensors that combine a bipolar temperature sensor and an A-to-D converter on the same chip. The implementation in CMOS technology reduces the processing costs to a minimum while having the best-suited technology to increase the (digital) intelligence. The accuracy of conventional CMOS smart temperature sensors is degraded by the offset of the read-out electronics. Calibration of these errors is quite expensive, however, dynamic offset-cancellation techniques can reduce the offset of amplifiers by a factor 100 to 1000 and do not need trimming. Chapter two gives an elaborate description of the different kinds of dynamic offset-cancellation techniques. Also a new technique is introduced called the nested chopper technique. An implementation of a CMOS nested-chopper instrumentation amplifier shows a residual offset of less than lOOn V, which is the best result reported to date."
The 14th conference in the series focused on the most recent advances in the study of the structural and electronic properties of semiconducting materials by the application of transmission and scanning electron microscopy. The latest developments in the use of other important microcharacterisation techniques were also covered and included the latest work using scanning probe microscopy and also X-ray topography and diffraction.
Comprises four parts, the first of which provides an overview of the topics that are developed from fundamental principles to more advanced levels in the other parts. Presents in the second part an in-depth introduction to the relevant background in molecular and cellular biology and in physical chemistry, which should be particularly useful for students without a formal background in these subjects. Provides in the third part a detailed treatment of microscopy techniques and optics, again starting from basic principles. Introduces in the fourth part modern statistical approaches to the determination of parameters of interest from microscopy data, in particular data generated by single molecule microscopy experiments. Uses two topics related to protein trafficking (transferrin trafficking and FcRn-mediated antibody trafficking) throughout the text to motivate and illustrate microscopy techniques
Almost all semiconductor devices contain metal-semiconductor, insulator-semiconductor, insulator-metal and/or semiconductor-semiconductor interfaces; and their electronic properties determine the device characteristics. This is the first monograph that treats the electronic properties of all different types of semiconductor interfaces. Using the continuum of interfacea "induced gap states (IFIGS) as a unifying theme, MAnch explains the band-structure lineup at all types of semiconductor interfaces. These intrinsic IFIGS are the wave-function tails of electron states, which overlap a semiconductor band-gap exactly at the interface, so they originate from the quantum-mechanical tunnel effect. He shows that a more chemical view relates the IFIGS to the partial ionic character of the covalent interface-bonds and that the charge transfer across the interface may be modeled by generalizing Paulinga (TM)s electronegativity concept. The IFIGS-and-electronegativity theory is used to quantitatively explain the barrier heights and band offsets of well-characterized Schottky contacts and semiconductor heterostructures, respectively.
This book provides a comprehensive and up-to-date guide to the AMOLED technologies and applications which have become industry standard in a range of devices, from small mobile displays to large televisions. Unlike other books on the topic, which cover the fundamentals, materials, processing, and manufacturing of OLEDs, this one-stop book discusses the core components, such as TFT backplanes, OLED materials and devices, and driving schematics together in one volume with chapters written by experts from leading international companies in the field of OLED materials and OLED TVs. It also examines emerging areas, such as micro-LEDs, displays using quantum dots, and AR & VR displays. Presenting the latest research trends as well as the basic principles of each topic, this book is intended for undergraduate and postgraduate students taking display-related courses, new researchers, and engineers in related fields.
The book focuses on the topology optimization method for nano-optics. Both principles and implementing practice have been addressed, with more weight placed on applications. This is achieved by providing an in-depth study on the major topic of topology optimization of dielectric and metal structures for nano-optics with extension to the surface structures for electromagnetics. The comprehensive and systematic treatment of practical issues in topology optimization for nano-optics is one of the major features of the book, which is particularly suited for readers who are interested to learn practical solutions in topology optimization. The book can benefit researchers, engineers, and graduate students in the fields of structural optimization, nano-optics, wave optics, electromagnetics, etc.
This book is concerned with wafer fabrication and the factories that manufacture microprocessors and other integrated circuits. With the invention of the transistor in 1947, the world as we knew it changed. The transistor led to the microprocessor, and the microprocessor, the guts of the modern computer, has created an epoch of virtually unlimited information processing. The electronics and computer revolution has brought about, for better or worse, a new way of life. This revolution could not have occurred without wafer fabrication, and its associated processing technologies. A microprocessor is fabricated via a lengthy, highly-complex sequence of chemical processes. The success of modern chip manufacturing is a miracle of technology and a tribute to the hundreds of engineers who have contributed to its development. This book will delineate the magnitude of the accomplishment, and present methods to analyze and predict the performance of the factories that make the chips. The set of topics covered juxtaposes several disciplines of engineering. A primary subject is the chemical engineering aspects of the electronics industry, an industry typically thought to be strictly an electrical engineer's playground. The book also delves into issues of manufacturing, operations performance, economics, and the dynamics of material movement, topics often considered the domain of industrial engineering and operations research. Hopefully, we have provided in this work a comprehensive treatment of both the technology and the factories of wafer fabrication. Novel features of these factories include long process flows and a dominance of processing over operational issues.
Present-day scienceand technology have become increasingly based on studies and applications of thin films. This is especiallytrue of solid-state physics, semiconduc tor electronics, integrated optics, computer science, and the like. In these fields, it is necessary to use filmswith an ordered structure, especiallysingle-crystallinefilms, because physical phenomena and effects in such films are most reproducible. Also, active parts of semiconductor and other devices and circuits are created, as a rule, in single-crystal bodies. To date, single-crystallinefilms have been mainly epitaxial (or heteroepitaxial); i.e., they have been grown on a single-crystalline substrate, and principal trends, e.g., in the evolution of integrated circuits (lCs), have been based on continuing reduction in feature size and increase in the number of components per chip. However, as the size decreases into the submicrometer range, technological and physical limitations in integrated electronics become more and more severe. It is generally believed that a feature size of about 0.1um will have a crucial character. In other words, the present two-dimensional ICs are anticipated to reach their limit of minimization in the near future, and it is realized that further increase of packing density and/or functions might depend on three-dimensional integration. To solve the problem, techniques for preparation of single-crystalline films on arbitrary (including amorphous) substrates are essential."
In recent decades, the way human beings interact with technology has been significantly transformed. In our daily life, ever fewer manually controlled devices are used, giving way to automatized houses, cars, and devices. A significant part of this technological revolution relies on signal detection and evaluation, placing detectors as core devices for further technological developments. This book introduces a versatile contribution to achieving light sensing: Organic Semiconductor Devices for Light Detection. The text is organized to guide the reader through the main concepts of light detection, followed by a introduction to the semiconducting properties of organic molecular solids. The sources of non-idealities in organic photodetectors are presented in chapter 5, and a new device concept, which aims to overcome some of the limitation discussed in the previous chapters, is demonstrated. Finally, an overview of the field is given with a selection of open points for future investigation.
This book presents the high-precision analysis of ground states and low-energy excitations in fractional quantum Hall states formed by Dirac electrons, which have attracted a great deal of attention. In particular the author focuses on the physics of fractional quantum Hall states in graphene on a hexagonal boron nitride substrate, which was recently implemented in experiments. The numerical approach employed in the book, which uses an exact numerical diagonalization of an effective model Hamiltonian on a Haldane's sphere based on pseudopotential representation of electron interaction, provides a better understanding of the recent experiments. The book reviews various aspects of quantum Hall effect: a brief history, recent experiments with graphene, and fundamental theories on integer and fractional Hall effects. It allows readers to quickly grasp the physics of quantum Hall states of Dirac fermions, and to catch up on latest research on the quantum Hall effect in graphene.
The contrasting examples of microwave plasmas given in this volume demonstrate their capability of not only covering the totality of expressed needs in that particular field, but in many others. For example the ions and reactive neutral species, indispensable for the synergetic effects in etching and deposition processes can be used in metallurgical treatment, and for materials processing in general. They also have the ability to dissociate molecules and excite atoms as required in analytical chemistry where the information on the constituent concentrations is obtained through optical spectroscopy or mass spectrometry. Finally, microwave plasmas can supply the photons for laser and lighting applications. It is noteworthy that microwave plasmas cover an impressive pressure range of eight orders of magnitude from 10-3 Pa (10-5 torr) to above atmospheric pressure. The versatility of microwave plasmas, their moderate cost, and their ease of implementation particularly appeal to the industrial entrepreneur.
This new edition presents a unified description of these insulators from one to three dimensions based on the modified Dirac equation. It derives a series of solutions of the bound states near the boundary, and describes the current status of these solutions. Readers are introduced to topological invariants and their applications to a variety of systems from one-dimensional polyacetylene, to two-dimensional quantum spin Hall effect and p-wave superconductors, three-dimensional topological insulators and superconductors or superfluids, and topological Weyl semimetals, helping them to better understand this fascinating field. To reflect research advances in topological insulators, several parts of the book have been updated for the second edition, including: Spin-Triplet Superconductors, Superconductivity in Doped Topological Insulators, Detection of Majorana Fermions and so on. In particular, the book features a new chapter on Weyl semimetals, a topic that has attracted considerable attention and has already become a new hotpot of research in the community.
Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology provides a comprehensive overview of materials for application in thin film solar cells. It is the first book that compares experimental and computer-modeling methods, combining the state of the art in technology with the latest insights in device modeling. A wide range of experimental issues are explored, from materials and basic device physics of thin film solar cells to potential mass production facilities for solar panels. The modeling section presents an approach to integrated optical and electrical modeling of complete devices, including optical light trapping, and describes the physical materials parameters related to amorphous silicon that are crucial for successful modeling. The increasing importance of multijunction cells with different bandgap components for thin film silicon cells is reflected in a description of the latest breakthroughs acquired experimentally and by modeling. Concluding chapters describe what can be learned from combined modeling and device fabrication, indicating potential future methods of amorphous silicon solar cell optimization. This book will prove invaluable to researchers in the amorphous and microcrystalline silicon field and the physical and experimental approaches will be of interest to researchers investigating solar cells or other film devices for large area applications. |
![]() ![]() You may like...
Mathematical Models in Biology…
Valeria Zazzu, Maria Brigida Ferraro, …
Hardcover
Sequences, Groups, and Number Theory
Valerie Berthe, Michel Rigo
Hardcover
R5,205
Discovery Miles 52 050
Arithmetic and Algebraic Circuits
Antonio Lloris Ruiz, Encarnacion Castillo Morales, …
Hardcover
R5,234
Discovery Miles 52 340
Electromagnetic Wave Diffraction by…
Smirnov, Ilyinsky
Hardcover
|