Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials
Provides an introduction to fundamental mixer types, as well as variations on the classical mixer designs.
This book is an introduction to the basics of surface science. The Nobel Prize winner Wolfgang Pauli's statement, 'God made solids, but surfaces were the work of the devil!' emphasizes the diabolic nature of surfaces. Surfaces are the external border of materials to the external worlds, thus by exploring surfaces one can investigate the material. In the last few decades new and exciting surface properties have been explored in nanomaterials, low-dimensional structures in electronic and photonic devices and other numerous applications.
The book gives a detailed presentation of high-frequency bipolar transistors in silicon or silicon-germanium technology with particular emphasis placed on today's advanced compact models and their physical foundations. The first part introduces the fundamentals of bipolar transistors on a graduate-student level. The second part considers the physics and modeling of bipolar transistors in detail. The final part describes basic circuit configurations, aspects of process integration and applications. This modern book-length treatment will interest those working in the field, including circuit designers, industrial process developers, and PhD students.
The book is an expanded autobiography of the famous theoretical physicist Isaak Khalatnikov. He worked together with L.D. Landau at the Institute for Physical Problems lead by P.L. Kapitza. He is the co-author of L.D. Landau in a number of important works. They worked together in the frame of the so-called Nuclear Bomb Project. After the death of L.D. Landau, I.M. Khalatnikov initiated the establishment of the Institute for Theoretical Physics, named in honour of L.D. Landau, within the USSR Academy of Sciences. He headed this institute from the beginning as its Director. The institute inherited almost all traditions of the Landau scientific school and played a prominent role in the development of theoretical physics. So, this is a story about how the institute was created, how it worked, and about the life of the physicists in the "golden age" of the Soviet science. A separate chapter is devoted to todays life of the institute and the young generation of physicists working now in science. It is an historically interesting book on the development of Soviet and Russian science and presents the background of the Soviet nuclear bomb program in the cold war age. In war times, Khalatnikov was a chief of the military staff of nuclear research. He writes about the internal conditions of Soviet society, the way of operating of the Soviet authorities and ways for scientists to interact with them. It gives many interesting insights into the development of superconductivity and superfluidity. The book is written by the most experienced and best informed person among the few living Russian scientists in the environment of Landau. Many stories of the book were never published before and considered as "top secret".
Frank Handle ] 1.1 What to Expect For some time now, I have been toying around with the idea of writing a book about "Ceramic Extrusion," because to my amazement I have been unable to locate a single existing, comprehensive rundown on the subject - much in contrast to, say, plastic extrusion and despite the fact that there are some outstanding contributions to be found about certain, individual topics, such as those in textbooks by Reed 1], Krause 2], Bender/Handle ] 3] et al. By way of analogy to Woody Allen's wonderfully ironic movie entitled "Eve- thing You Always Wanted to Know about Sex," I originally intended to call this book "Everything You Always Wanted to Know about Ceramic Extrusion," but - ter giving it some extra thought, I eventually decided on a somewhat soberer title. Nevertheless, my companion writers and I have done our best - considering our target group and their motives - not to revert to the kind of jargon that people use when they think the less understandable it sounds, the more scienti c it appears. This book addresses all those who are looking for a lot or a little general or selective information about ceramic extrusion and its sundry aspects. We realize that most of our readers will not be perusing this book just for fun or out of intellectual curiosity, but because they hope to get some use out of it for their own endeavours."
This handbook addresses the development of energy-efficient, environmentally friendly solid-state light sources, in particular semiconductor light emitting diodes (LEDs) and other solid-state lighting devices. It reflects the vast growth of this field and impacts in diverse industries, from lighting to communications, biotechnology, imaging, and medicine. The chapters include coverage of nanoscale processing, fabrication of LEDs, light diodes, photodetectors and nanodevices, characterization techniques, application, and recent advances. Readers will obtain an understanding of the key properties of solid-state lighting and LED devices, an overview of current technologies, and appreciation for the challenges remaining. The handbook will be useful to material growers and evaluators, device design and processing engineers, newcomers, students, and professionals in the field.
Handbook of Optoelectronics offers a self-contained reference from the basic science and light sources to devices and modern applications across the entire spectrum of disciplines utilizing optoelectronic technologies. This second edition gives a complete update of the original work with a focus on systems and applications. Volume I covers the details of optoelectronic devices and techniques including semiconductor lasers, optical detectors and receivers, optical fiber devices, modulators, amplifiers, integrated optics, LEDs, and engineered optical materials with brand new chapters on silicon photonics, nanophotonics, and graphene optoelectronics. Volume II addresses the underlying system technologies enabling state-of-the-art communications, imaging, displays, sensing, data processing, energy conversion, and actuation. Volume III is brand new to this edition, focusing on applications in infrastructure, transport, security, surveillance, environmental monitoring, military, industrial, oil and gas, energy generation and distribution, medicine, and free space. No other resource in the field comes close to its breadth and depth, with contributions from leading industrial and academic institutions around the world. Whether used as a reference, research tool, or broad-based introduction to the field, the Handbook offers everything you need to get started. (The previous edition of this title was published as Handbook of Optoelectronics, 9780750306461.) John P. Dakin, PhD, is professor (emeritus) at the Optoelectronics Research Centre, University of Southampton, UK. Robert G. W. Brown, PhD, is chief executive officer of the American Institute of Physics and an adjunct full professor in the Beckman Laser Institute and Medical Clinic at the University of California, Irvine.
The purpose of virtual reality is to make possible a sensorimotor and cognitive activity for a user in a digitally created artificial world. Recent advances in computer technology have led to a new generation of VR devices such as VR headsets. Accordingly, virtual reality poses many new scientific challenges for researchers and professionals. The aim of this book, a manual meant for both designers and users of virtual reality, is to present the current state of knowledge on the use of VR headsets in the most complete way possible. The book is divided into 13 chapters. The objective of the first chapter is to give an introduction to VR and clarify its scope. The next chapter presents a theoretical approach to virtual reality through our Immersion and Interaction methodology also known as "3I(2) model''. Then, a chapter about human senses is necessary to understand the sensorimotor immersion, especially vision. These chapters are followed by several chapters which present the different visual interfaces and the VR headsets currently available on the market. These devices can impart comfort and health problems due to sensorimotor discrepancies. A chapter is devoted to these problems, followed by a chapter that gives a detailed discussion of methods and 32 solutions to dispel, or at least to decrease, VR sickness. The following three chapters present different VR applications that use VR headsets (behavioural sciences, industrial uses and Digital Art) and the final chapter provides conclusions and discusses future VR challenges.
Reviews various types of MLD processes including vapor-phase MLD, liquid-phase MLD, and selective MLD. Introduces organic multiple quantum dots (Organic MQDs) that are typical tailored organic thin-film materials produced by MLD. Designs light modulators/optical switches, predicts their performance, and discusses impacts of the organic MQDs on them. Discusses impacts of the organic MQDs on optical interconnects within computers and on optical switching systems. Presents proposals of MLD applications to energy conversion systems, molecular targeted drug delivery, photodynamic therapy, and laser surgery for cancer therapy.
In spite of the increasing importance of microcavities, device physics or the observable phenomena in optical microcavities such as enhanced or inhibited spontaneous emission and its relation with the laser oscillation has not been systematically well-described-until now. Spontaneous Emission and Laser Oscillation in Microcavities presents the basics of optical microcavities. The volume is divided into ten chapters, each written by respected authorities in their areas. The book surveys several methods describing free space spontaneous emission and discusses changes in the feature due to the presence of a cavity. The effect of dephasing of vacuum fields on spontaneous emission in a microcavity and the effects of atomic broadening on spontaneous emission in an optical microcavity are examined. The book details the splitting in transmission peaks of planar microcavities containing semiconductor quantum wells. A simple but useful way to consider the change in the spontaneous emission rate from the viewpoint of mode density alteration by wavelength-sized cavities is provided. Authors also discuss the spontaneous emission in dielectric planar microcavities. Spontaneous emission in microcavity surface emitting lasers is covered, as are the effects of electron confinement in semiconductor quantum wells, wires, and boxes also given. The volume extends the controlling spontaneous emission phenomenon to laser oscillation. Starting from the Fermi golden rule, the microcavity laser rate equations are derived, and the oscillation characteristics are analyzed. Recent progress in optical microcavity experiments is summarized, and the applicability in massively optical parallel processing systems and demands for the device performance are explored. This volume is extremely useful as a textbook for graduate and postgraduate students and works well as a unique reference for researchers beginning to study in the field.
Semiconductor Surfaces and Interfaces deals with structural and electronic properties of semiconductor surfaces and interfaces. The first part introduces the general aspects of space-charge layers, of clean-surface and adatom-induced surfaces states, and of interface states. It is followed by a presentation of experimental results on clean and adatom-covered surfaces which are explained in terms of simple physical and chemical concepts. Where available, results of more refined calculations are considered. This third edition has been thoroughly revised and updated. In particular it now includes an extensive discussion of the band lineup at semiconductor interfaces. The unifying concept is the continuum of interface-induced gap states.
Silicon-based microelectronics has steadily improved in various performance-to-cost metrics. But after decades of processor scaling, fundamental limitations and considerable new challenges have emerged. The integration of compound semiconductors is the leading candidate to address many of these issues and to continue the relentless pursuit of more powerful, cost-effective processors. III-V Compound Semiconductors: Integration with Silicon-Based Microelectronics covers recent progress in this area, addressing the two major revolutions occurring in the semiconductor industry: integration of compound semiconductors into Si microelectronics, and their fabrication on large-area Si substrates. The authors present a scientific and technological exploration of GaN, GaAs, and III-V compound semiconductor devices within Si microelectronics, building a fundamental foundation to help readers deal with relevant design and application issues. Explores silicon-based CMOS applications developed within the cutting-edge DARPA program Providing an overview of systems, devices, and their component materials, this book: Describes structure, phase diagrams, and physical and chemical properties of III-V and Si materials, as well as integration challenges Focuses on the key merits of GaN, including its importance in commercializing a new class of power diodes and transistors Analyzes more traditional III-V materials, discussing their merits and drawbacks for device integration with Si microelectronics Elucidates properties of III-V semiconductors and describes approaches to evaluate and characterize their attributes Introduces novel technologies for the measurement and evaluation of material quality and device properties Investi
Given silicon's versatile material properties, use of low-cost silicon photonics continues to move beyond light-speed data transmission through fiber-optic cables and computer chips. Its application has also evolved from the device to the integrated-system level. A timely overview of this impressive growth, Silicon Photonics for Telecommunications and Biomedicine summarizes state-of-the-art developments in a wide range of areas, including optical communications, wireless technologies, and biomedical applications of silicon photonics. With contributions from world experts, this reference guides readers through fundamental principles and focuses on crucial advances in making commercial use of silicon photonics a viable reality in the telecom and biomedical industries. Taking into account existing and anticipated industrial directions, the book balances coverage of theory and practical experimental research to explore solutions for obstacles to the viable commercialization of silicon photonics. The book's special features include: A section on silicon plasmonic waveguides Detailed coverage of novel III-V applications A chapter on 3D integration Discussion of applications for energy harvesting/photovoltaics This book reviews the most important technological trends and challenges. It presents topics involving major silicon photonics applications in telecommunications, high-power photonics, and biomedicine. It includes discussion of silicon plasmonic waveguides, piezoelectric tuning of silicon's optical properties, and applications of two-photon absorption. Expert authors with industry research experience examine the challenge of hybridizing III-V compound semiconductors on silicon to achieve monolithic light sources. They also address economic compatibility and heat dissipation issues in CMOS chips, challenges in designing electronic photonics in
The SISDEP 93 conference proceedings present outstanding research and development results in the area of numerical process and device simulation. The miniaturization of today's semiconductor devices, the usage of new materials and advanced process steps in the development of new semiconductor technologies suggests the design of new computer programs. This trend towards more complex structures and increasingly sophisticated processes demands advanced simulators, such as fully three-dimensional tools for almost arbitrarily complicated geometries. With the increasing need for better models and improved understanding of physical effects, these proceedings support the simulation community and the process- and device engineers who need reliable numerical simulation tools for characterization, prediction, and development. This book covers the following topics: process simulation and equipment modeling, device modeling and simulation of complex structures, device simulation and parameter extraction for circuit models, integration of process, device and circuit simulation, practical applications of simulation, algorithms and software.
With the ongoing, worldwide installation of 40 Gbit/s fiber optic transmission systems, there is an urgency to learn more about the photonic devices supporting this technology. Focusing on the components used to generate, modulate, and receive optical signals, High-Speed Photonic Devices presents the state-of- the-art enabling technologies behind high-speed telecommunication systems. Written by experts in the field, the book explores high-speed transmitters, receivers, electronics, and all-optical techniques. Following a brief introduction of the devices, the subsequent chapters cover... High-speed, low-driving voltage electroabsorption modulators and their integration with distributed-feedback lasers for high-bitrate and long-haul optical fiber transmission systems Linear electro-optic Ti-diffused LiNbO3 devices, specifically, traveling-wave high-speed modulators III-V compound semiconductor electro-optic modulators High-speed polymer device technology and numerous examples of new material combinations Fundamental physical processes used in common photodetectors as well as some emerging photodetector designs High-speed electronic devices and integrated circuit technologies for very high-speed future lightwave communication systems Very high-speed all-optical technologies required for multi-terabit/s optical fiber transmission systems. Although it is hard to predict which particular technology will prevail in the future, you can be sure that the systems discussed in High-Speed Photonic Devices will help pave the way for low-cost, high-performance fiber optic networks that will cover the entire globe. This improved and easily accessible communications capability will no doubt better the quality of life for everyone.
Semiconductors lie at the heart of some of the most important industries and technologies of the twentieth century. The complexity of silicon integrated circuits is increasing considerably because of the continuous dimensional shrinkage to improve efficiency and functionality. This evolution in design rules poses real challenges for the materials scientists and processing engineers. Materials, defects and processing now have to be understood in their totality. World experts discuss, in this volume, the crucial issues facing lithography, ion implication and plasma processing, metallization and insulating layer quality, and crystal growth. Particular emphasis is placed upon silicon, but compound semiconductors and photonic materials are also highlighted. The fundamental concepts of phase stability, interfaces and defects play a key role in understanding these crucial issues. These concepts are reviewed in a crucial fashion.
This book discusses the fundamental of bending actuation with a focus on ionic metal composites. It describes the applications of ionic polymer metal composite (IPMC) actuators, from conventional robotic systems to compliant micro robotic systems used to handle the miniature and fragile components during robotic micro assembly. It also presents mathematical modelings of actuators for engineering, biomedical, medical and environmental systems. The fundamental relation of IPMC actuators to the biomimetic systems are also included.
The average car now contains much more electronic circuitry than would have been the case, even five years ago. This leaves many technicians struggling to keep up with current developments in the repair and maintenance of these electronic systems. Often, texts covering vehicle electronics dwell on unnecessary maths and general electronics principles. This practical guide discusses electronics ony within the context of the vehicle system under consideration and thus keeps theory to a minimum. Using numerous diagrams, photographs and step by step instructions, this book gives a clear description of vehicle electronic systems and fault diagnosos and than continues on to the testing and repair of these systems. Regular reviews and summaries help consolidate learning and make this book ideal for workshop and classroom use.
Issues relating to the high-K gate dielectric are among the greatest challenges for the evolving International Technology Roadmap for Semiconductors (ITRS). More than just an historical overview, this book will assess previous and present approaches related to scaling the gate dielectric and their impact, along with the creative directions and forthcoming challenges that will define the future of gate dielectric scaling technology.
This thesis presents analytical theoretical studies on the interplay between charge density waves (CDW) and superconductivity (SC) in the actively studied transition-metal dichalcogenide 1T-TiSe2. It begins by reapproaching a years-long debate over the nature of the phase transition to the commensurate CDW (CCDW) state and the role played by the intrinsic tendency towards excitonic condensation in this system. A Ginzburg-Landau phenomenological theory was subsequently developed to understand the experimentally observed transition from commensurate to incommensurate CDW (ICDW) order with doping or pressure, and the emergence of a superconducting dome that coexists with ICDW. Finally, to characterize microscopically the effects of the interplay between CDW and SC, the spectrum of CDW fluctuations beyond mean-field was studied in detail. In the aggregate, the work reported here provides an encompassing understanding of what are possibly key microscopic underpinnings of the CDW and SC physics in TiSe2.
First published in 1990, this book provides an overview of the global distribution of the electronics industry and the structural factors which promoted this distribution by the end of the 1980s. Regarded as a 'flagship' sector in both advanced and developing countries, the electronics industry is encouraged by governments everywhere. Covering both the civilian and the military sides of the industry, Professor Todd reflects on the future of civilian electronics in the light of its global segmentation, and hints at the fundamental role of governments in the unfolding of both civilian and defence-electronics developments. He also endorses the overwhelming significance of strategies being played by electronics enterprises in both the USA and Japan.
Drawn from the author's introductory course at the University of Orsay, Superconductivity of Metals and Alloys is intended to explain the basic knowledge of superconductivity for both experimentalists and theoreticians. These notes begin with an elementary discussion of magnetic properties of Type I and Type II superconductors. The microscopic theory is then built up in the Bogolubov language of self-consistent fields. This text provides the classic, fundamental basis for any work in the field of superconductivity.
The book covers all aspects from the expansion of the Boltzmann transport equation with harmonic functions to application to devices, where transport in the bulk and in inversion layers is considered. The important aspects of stabilization and band structure mapping are discussed in detail. This is done not only for the full band structure of the 3D k-space, but also for the warped band structure of the quasi 2D hole gas. Efficient methods for building the Schrodinger equation for arbitrary surface or strain directions, gridding of the 2D k-space and solving it together with the other two equations are presented."
This book serves as a quick guide on the latest material systems including their synthesis, fabrication and characterization techniques. It discusses recent developments in different material systems and discusses their novel applications in various branches of science and engineering. The book briefs latest computational tools and techniques that are used to discover new material systems. The book also briefs applications of new emerging materials in various fields including, healthcare, sensors, opto-electronics, high power devices and nano-electronics. This book helps to create a synergy between computational and experimental research methods to better understand a particular material system. |
You may like...
New Advances in Semiconductors
Alberto Adriano Cavalheiro
Hardcover
Polyimide for Electronic and Electrical…
Sombel Diaham
Hardcover
Graphene and Its Derivatives - Synthesis…
Ishaq Ahmad, Fabian I. Ezema
Hardcover
|