Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Electronic devices & materials
In-depth overview of two-dimensional semiconductors from theoretical studies, properties to emerging applications! Two-dimensional (2D) materials have attracted enormous attention due to their exotic properties deriving from their ultrathin dimensions. 2D materials, such as graphene, transition metal dichalcogenides, transition metal oxides, black phosphorus and boron nitride, exhibit versatile optical, electronic, catalytic and mechanical properties, thus can be used in a wide range of applications, including electronics, optoelectronics and optical applications. Two-Dimensional Semiconductors: Synthesis, Physical Properties and Applications provides an in-depth view of 2D semiconductors from theoretical studies, properties to applications, taking into account the current state of research and development. It introduces various preparation methods and describes in detail the physical properties of 2D semiconductors including 2D alloys and heterostructures. The covered applications include, but are not limited to, field-effect transistors, spintronics, solar cells, photodetectors, light-emitting diode, sensors and bioelectronics. * Highly topical: 2D materials are a rapidly advancing field that attracts increasing attention * Concise overview: covers theoretical studies, preparation methods, physical properties, potential applications, the challenges and opportunities * Application oriented: focuses on 2D semiconductors that can be used in various applications such as field-effect transistors, solar cells, sensors and bioelectronics * Highly relevant: newcomers as well as experienced researchers in the field of 2D materials will benefit from this book Two-Dimensional Semiconductors: Synthesis, Physical Properties and Applications is written for materials scientists, semiconductor and solid state physicists, electrical engineers, and readers working in the semiconductor industry.
A gripping look at the rise of the microchip and the British tech company caught in the middle of the global battle for dominance. One tiny device lies at the heart of the world's relentless technological advance: the microchip. Today, these slivers of silicon are essential to running just about any machine, from household devices and factory production lines to smartphones and cutting-edge weaponry. At the centre of billions of these chips is a blueprint created and nurtured by a single company: Arm. Founded in Cambridge in 1990, Arm's designs have been used an astonishing 250 billion times and counting. The UK's high-tech crown jewel is an indispensable part of a global supply chain driven by American brains and Asian manufacturing brawn that has become the source of rising geopolitical tension. With exclusive interviews and exhaustive research, The Everything Blueprint tells the story of Arm, from humble beginnings to its pivotal role in the mobile phone revolution and now supplying data centres, cars and the supercomputers that harness artificial intelligence. It explores the company's enduring relationship with Apple and numerous other tech titans, plus its multi-billion-pound sale to the one-time richest man in the world, Japan's Masayoshi Son. The Everything Blueprint details the titanic power struggle for control of the microchip, through the eyes of a unique British enterprise that has found itself in the middle of that battle.
You ve just purchased a TI-83 Plus calculator to assist in performing different types of mathematical equations now, how can you get the most out of it? You ll find the answer to this question with our comprehensive, 3-panel guide that shows in great detail what exactly the TI-83 Plus can do. Function key and mode descriptions, as well as problem-solving examples, are included within a color-coded format for easy reference. "
Current leading-edge CMOS transistors are about as small as they will get. We now have a simple, clear, very physical understanding of how these devices function, but it has not yet entered our textbooks. Besides, CMOS logic transistors, power transistors are increasingly important as are III-V heterostructure transistors for high-frequency communication. Transistor reliability is also important but rarely treated in introductory textbooks.As we begin a new era, in which making transistors smaller will no longer be a major driving force for progress, it is time to look back at what we have learned in transistor research. Today we see a need to convey as simply and clearly as possible the essential physics of the device that makes modern electronics possible. That is the goal of these lectures. This volume rearranges the familiar topics and distills the most essential among them, while adding most recent approaches which have become crucial to the discussion. To follow the lectures, readers need only a basic understanding of semiconductor physics. Familiarity with transistors and electronic circuits is helpful, but not assumed.
The integration of electronic engineering, mechanical engineering, control and computer engineering - Mechatronics - lies at the heart of the innumerable gadgets, processes and technology without which modern life would seem impossible. From auto-focus cameras to car engine management systems, and from state-of-the-art robots to the humble washing machine, Mechatronics has a hand in them all.
ARM Microcontrollers: Theory and Practical Applications provides students with a concise yet complete introduction to embedded systems, namely microcontroller products based on the ARM microprocessor. Opening chapters offer students an introduction to digital logic, embedded system, and ARM processors, covering such topics as CMOS logic, number systems, embedded system design, and Cortex-M4 architecture. Additional chapters explore ARM Cortex-M assembly language, C programming in embedded systems, and peripheral modules, which provides many examples of how to program peripherals like Timers, ADC, PWM, UART, and more. Students learn about interrupts and exceptions, Bluetooth low energy, and Wi-Fi. The final chapter features nine projects designed to help students connect what they learn within the textbook to real-world applications, including traffic light controllers, smart plant watering systems, weather stations, solar panel trackers, and more. Exercises within each chapter encourage engagement and a collection of helpful appendices provide students with the reference materials they need to complete projects and apply critical skillsets. Featuring a highly accessible and practical approach, ARM Microcontrollers is an ideal textbook for courses and programs in electrical engineering.
Metal halide perovskites are the hottest materials currently.This unique compendium covers systematically the fundamental aspects of synthesis, properties, and applications of metal halide perovskites that exhibit unique properties and useful functionalities.Written for beginners and practitioners, this useful reference text provides a good balance between fundamental concepts/principles and related recent researches with many highlighted examples.This volume benefits researchers, practitioners, graduate students in materials chemistry/nanochemistry, physical chemistry and semiconductors.
Modelling Methodologies in Analogue Integrated Circuit Design provides a holistic view of modelling for analogue, high frequency, mixed signal, and heterogeneous systems for designers working towards improving efficiency, reducing design times, and addressing the challenges of representing aging, variability, and other technical challenges at the nanometre scale. The book begins by introducing the concept, history, and development of circuit design up to the present day. The first half of the book then covers various modelling methodologies and addresses model accuracy and verification. Modelling approaches are introduced theoretically along with simple examples to demonstrate the concepts. Later chapters approach modelling from the application point of view, including case studies from the vast domain of integrated circuit design. Topics covered include response surface modeling; machine learning; data-driven and physics-based modeling; verification of modelling: metrics and methodologies; an overview of modern, automated analog circuit modeling methods; machine learning techniques for the accurate modeling of integrated inductors for RF applications; modeling of variability and reliability in analog circuits; modeling of pipeline ADC functionality and non-idealities; power systems modelling; case study - an efficient design and layout of a 3D accelerometer by automated synthesis; and sensing schemes for spintronic resistive memories.
Polyaniline (PANI) is one of the most common and widely studied conducting polymers due to its excellent electro-chemical and electrical properties and its various applications in areas such as solar cell technologies, drug delivery, organic light emitting diodes (OLEDs), field-effect transistors (FETs), sensors, electro-chromic display, etc. PANI thin films play an important role in energy storage and conversion devices and show great potential in the supercapacitors owing to their high specific capacitance, high flexibility, and low cost. However, no in-depth information about this emerging PANI thin film technology is available. Properties, Techniques, and Applications of Polyaniline (PANI) Thin Films: Emerging Research and Opportunities is an essential publication that focuses on high-throughput synthesis of PANI thin films and their characterization techniques. The book also covers promising applications of PANI thin films and applications including solar cells. Featuring research on topics such as solar cells, post-synthesis treatments, and physiochemistry, this book is ideally designed for scientists, industry practitioners, engineers, managers, academicians, researchers, and students seeking coverage in the areas of polymeric applications.
Today, air-to-surface vessel (ASV) radars, or more generally maritime surveillance radars, are installed on maritime reconnaissance aircraft for long-range detection, tracking and classification of surface ships (ASuW - Air to Surface Warfare) and for hunting submarines (ASW - anti-submarine warfare). Such radars were first developed in the UK during WWII as part of the response to the threat to shipping from German U-Boats. This book describes the ASV radars developed in the UK after WWII (1946-2000) and used by the RAF for long-range maritime surveillance.
Current leading-edge CMOS transistors are about as small as they will get. We now have a simple, clear, very physical understanding of how these devices function, but it has not yet entered our textbooks. Besides, CMOS logic transistors, power transistors are increasingly important as are III-V heterostructure transistors for high-frequency communication. Transistor reliability is also important but rarely treated in introductory textbooks.As we begin a new era, in which making transistors smaller will no longer be a major driving force for progress, it is time to look back at what we have learned in transistor research. Today we see a need to convey as simply and clearly as possible the essential physics of the device that makes modern electronics possible. That is the goal of these lectures. This volume rearranges the familiar topics and distills the most essential among them, while adding most recent approaches which have become crucial to the discussion. To follow the lectures, readers need only a basic understanding of semiconductor physics. Familiarity with transistors and electronic circuits is helpful, but not assumed.
Since the initial predictions for the existence of Weyl fermions in condensed matter, many different experimental techniques have confirmed the existence of Weyl semimetals. Among these techniques, optical responses have shown a variety of effects associated with the existence of Weyl fermions. In chiral crystals, we find a new type of fermions protected by crystal symmetries — the chiral multifold fermions — that can be understood as a higher-spin generalization of Weyl fermions. This work provides a complete description of all chiral multifold fermions, studying their topological properties and the k·p models describing them. We compute the optical conductivity of all chiral multifold fermions and establish their optical selection rules. We find that the activation frequencies are different for each type of multifold fermion, thus constituting an experimental fingerprint for each type of multifold fermion. Building on the theoretical results obtained in the first part of our analysis, we study two chiral multifold semimetals: RhSi and CoSi. We analyze the experimental results with k·p and tight-binding models based on the crystal symmetries of the material. We trace back the features observed in the experimental optical conductivity to the existence of multifold fermions near the Fermi level and estimate the chemical potential and the scattering lifetime in both materials. Finally, we provide an overview of second-order optical responses and study the second-harmonic generation of RhSi. We find a sizeable second-harmonic response in the low-energy regime associated with optical transitions between topological bands. However, this regime is extremely challenging to access with the current experimental techniques. We conclude by providing an overview of the main results, highlighting potential avenues to further research on chiral multifold semimetals and the future of optical responses as experimental probes to characterize topological phases.
Semiconductors and Modern Electronics is a brief introduction to the physics behind semiconductor technologies. Chuck Winrich, a physics professor at Babson College, explores the topic of semiconductors from a qualitative approach to understanding the theories and models used to explain semiconductor devices. Applications of semiconductors are explored and understood through the models developed in the book. The qualitative approach in this book is intended to bring the advanced ideas behind semiconductors to the broader audience of students who will not major in physics. Much of the inspiration for this book comes from Dr. Winrich's experience teaching a general electronics course to students majoring in business. The goal of that class, and this book, is to bring forward the science behind semiconductors, and then to look at how that science affects the lives of people.
The unique compendium presents special principles and techniques of spectroscopic measurements that are used in semiconductor manufacturing.Since industrial applications of spectroscopy are significantly different from those traditionally used in scientific laboratories, the design concepts and characteristics of industrial spectroscopic devices may vary significantly from conventional systems. These peculiarities are thus succinctly summarized in this volume for a wide audience of students, engineers, and scientific workers.Exceptionally well-illustrated with practical solutions in detail, this useful reference text will open new horizons in new research areas.
|
You may like...
Solid State Electronic Devices, Global…
Ben Streetman, Sanjay Banerjee
Paperback
R2,180
Discovery Miles 21 800
Power System Harmonics - Analysis…
Ahmed Zobaa, Shady H.E Abdel Aleem, …
Hardcover
Impact of Digital Twins in Smart Cities…
Ingrid Vasiliu Feltes
Hardcover
R6,716
Discovery Miles 67 160
Exploring Zynq MPSoC - With PYNQ and…
Crockett H Louise, Northcote David, …
Hardcover
R1,856
Discovery Miles 18 560
|