![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering
This book demonstrates to readers why Gallium Nitride (GaN) transistors have a superior performance as compared to the already mature Silicon technology. The new GaN-based transistors here described enable both high frequency and high efficiency power conversion, leading to smaller and more efficient power systems. Coverage includes i) GaN substrates and device physics; ii) innovative GaN -transistors structure (lateral and vertical); iii) reliability and robustness of GaN-power transistors; iv) impact of parasitic on GaN based power conversion, v) new power converter architectures and vi) GaN in switched mode power conversion. Provides single-source reference to Gallium Nitride (GaN)-based technologies, from the material level to circuit level, both for power conversions architectures and switched mode power amplifiers; Demonstrates how GaN is a superior technology for switching devices, enabling both high frequency, high efficiency and lower cost power conversion; Enables design of smaller, cheaper and more efficient power supplies.
Radio Frequency and Microwave Power Amplifiers are finding an increasingly broad range of applications, particularly in communications and broadcasting, but also in the industrial, medical, automotive, aviation, military, and sensing fields. Each application has its own design specifications, for example, high linearity in modern communication systems or high efficiency in broadcasting, and, depending on process technology, capability to operate efficiently at very high frequencies, such as 77 GHz and higher for automotive radars. Advances in design methodologies have practical applications in improving gain, power output, bandwidth, power efficiency, linearity, input and output impedance matching, and heat dissipation. This essential reference presented in two volumes aims to provide comprehensive, state-of-the-art coverage of RF and microwave power amplifier design with in-depth descriptions of current and potential future approaches. Volume 1 covers principles, device modeling and matching networks, while volume 2 focuses specifically on efficiency and linearity enhancement techniques. The volumes will be of particular interest to engineers and researchers engaged in RF and microwave amplifier design, and those who are interested in systems incorporating RF and microwave amplifiers.
Basic AC Circuits, 2/E is a step-by-step approach to AC circuit
technology for the beginning student, hobbyist, technician, or
engineer. The book is built into a series of self-paced,
individualized learning goals covering electronics concepts, terms
and the mathematics required to fully understand AC circuit
problems--simple or complex. Each chapter includes learning
objectives, fully-illustrated examples, practice problems and
quizzes providing teachers, trainers and students a complete AC
technology resource. Basic AC Circuits, 2/E has been a staple of
the electronics educational market since 1981, but in the new
edition the author has updated the book to reflect changes in
technology, especially the test equipment available today.
Nanowires for Energy Applications, Volume 98, covers the latest breakthrough research and exciting developments in nanowires for energy applications. This volume focuses on various aspects of Nanowires for Energy Applications, presenting interesting sections on Electrospun semiconductor metal oxide nanowires for energy and sensing applications, Integration into flexible and functional materials, Nanowire Based Bulk Heterojunction Solar Cells, Semiconductor Nanowires for Thermoelectric Generation, Energy Scavenging: Mechanical, Thermoelectric, and Nanowire synthesis/growth methods, and more.
This book is a comprehensive reference source for practicing
engineers and students specializing in electric power engineering
and industrial electronics. It will illustrate the state of the art
in induction motors. Beginning with characteristics and basic
dynamic models of induction motors, and progressing to low- and
high- performance drive systems. The book will be rich in useful
information, without an excessive mathematical burden. Computer
simulations resulting in mock oscillograms of physical quantities
are used for illustration of basic control concepts.
These proceedings present selected research papers from CISC'18, held in Wenzhou, China. The topics include Multi-Agent Systems, Networked Control Systems, Intelligent Robots, Complex System Theory and Swarm Behavior, Event-Triggered Control and Data-Driven Control, Robust and Adaptive Control, Big Data and Brain Science, Process Control, Nonlinear and Variable Structure Control, Intelligent Sensor and Detection Technology, Deep learning and Learning Control Guidance, Navigation and Control of Flight Vehicles, and so on. Engineers and researchers from academia, industry, and government can get an insight view of the solutions combining ideas from multiple disciplines in the field of intelligent systems.
Robust Integration of Model-Based Fault Estimation and Fault-Tolerant Control is a systematic examination of methods used to overcome the inevitable system uncertainties arising when a fault estimation (FE) function and a fault-tolerant controller interact as they are employed together to compensate for system faults and maintain robustly acceptable system performance. It covers the important subject of robust integration of FE and FTC with the aim of guaranteeing closed-loop stability. The reader's understanding of the theory is supported by the extensive use of tutorial examples, including some MATLAB (R)-based material available from the Springer website and by industrial-applications-based material. The text is structured into three parts: Part I examines the basic concepts of FE and FTC, providing extensive insight into the importance of and challenges involved in their integration; Part II describes five effective strategies for the integration of FE and FTC: sequential, iterative, simultaneous, adaptive-decoupling, and robust decoupling; and Part III begins to extend the proposed strategies to nonlinear and large-scale systems and covers their application in the fields of renewable energy, robotics and networked systems. The strategies presented are applicable to a broad range of control problems, because in the absence of faults the FE-based FTC naturally reverts to conventional observer-based control. The book is a useful resource for researchers and engineers working in the area of fault-tolerant control systems, and supplementary material for a graduate- or postgraduate-level course on fault diagnosis and FTC. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
This book focuses on novel bismuth-containing alloys and nanostructures, covering a wide range of materials from semiconductors, topological insulators, silica optical fibers and to multiferroic materials. It provides a timely overview of bismuth alloys and nanostructures, from material synthesis and physical properties to device applications and also includes the latest research findings. Bismuth is considered to be a sustainable and environmentally friendly element, and has received increasing attention in a variety of innovative research areas in recent years. The book is intended as a reference resource and textbook for graduate students and researchers working in these fields.
This book is an in-depth description on how to design digital filters. The presentation is geared for practicing engineers, using open source computational tools, while incorporating fundamental signal processing theory. The author includes theory as-needed, with an emphasis on translating to practical application. The book describes tools in detail that can be used for filter design, along with the steps needed to automate the entire process. Breaks down signal processing theory into simple, understandable language for practicing engineers; Provides readers with a highly-practical introduction to digital filter design; Uses open source computational tools, while incorporating fundamental signal processing theory; Describes examples of digital systems in engineering and a description of how they are implemented in practice; Includes case studies where filter design is described in depth from inception to final implementation.
This book discusses physical design and mask synthesis of directed self-assembly lithography (DSAL). It covers the basic background of DSAL technology, physical design optimizations such as placement and redundant via insertion, and DSAL mask synthesis as well as its verification. Directed self-assembly lithography (DSAL) is a highly promising patterning solution in sub-7nm technology.
This book provides readers with a single-source guide to fabricate, characterize and model memristor devices for sensing applications. The authors describe a correlated, physics-based model to simulate and predict the behavior of devices fabricated with different oxide materials, active layer thickness, and operating temperature. They discuss memristors from various perspectives, including working mechanisms, different synthesis methods, characterization procedures, and device employment in radiation sensing and security applications.
This book focuses on the state-of-the-art of biosensor research and development for specialists and non-specialists. It introduces the fundamentals of the subject with relevant characteristics of transducer elements, as well as biochemical recognition molecules. This book is ideal for researchers of nanotechnology, materials science and biophysics.
This edited volume reviews the current state of the art in the additive manufacturing of optical componentry, exploring key principles, materials, processes and applications. A short introduction lets readers familiarize themselves with the fundamental principles of the 3D printing method. This is followed by a chapter on commonly-used and emerging materials for printing of optical components, and subsequent chapters are dedicated to specific topics and case studies. The high potential of additive manufactured optical components is presented based on different manufacturing techniques and accompanied with extensive examples - from nanooptics to large scale optics - and taking research and industrial perspectives. Readers are provided with an extensive overview of the new possibilities brought about by this alternative method for optical components manufacture. Finally, the limitations of the method with respect to manufacturing techniques, materials and optical properties of the generated objects are discussed. With contributions from experts in academia and industry, this work will appeal to a wide readership, from undergraduate students through engineers to researchers interested in modern methods of manufacturing optical components.
Recent rapid advances in femtosecond technology have had a great impact on their industrial applications such as: ultrafast optoelectronic devices and optical telecommunication systems, ultrashort-pulse lasers and measurement systems, and the development of novel materials for ultrafast functions. In this book, a wealth of knowledge covering requirements in applications details of recent achievements in important technical areas is presented by world-prominent authors in a concise, systematic form. As a whole, this is the first comprehensive book on the emerging field of femtosecond technology.
This book presents the breakthrough and cutting-edge progress for collaborative perception and mapping by proposing a novel framework of multimodal perception-relative localization-collaborative mapping for collaborative robot systems. The organization of the book allows the readers to analyze, model and design collaborative perception technology for autonomous robots. It presents the basic foundation in the field of collaborative robot systems and the fundamental theory and technical guidelines for collaborative perception and mapping. The book significantly promotes the development of autonomous systems from individual intelligence to collaborative intelligence by providing extensive simulations and real experiments results in the different chapters. This book caters to engineers, graduate students and researchers in the fields of autonomous systems, robotics, computer vision and collaborative perception.
This monograph presents new theories and methods for fixed-time cooperative control of multi-agent systems. Fundamental concepts of fixed-time stability and stabilization are introduced with insightful understanding. This book presents solutions for several problems of fixed-time cooperative control using systematic design methods. The book compares fixed-time cooperative control with asymptotic cooperative control, demonstrating how the former can achieve better closed-loop performance and disturbance rejection properties. It also discusses the differences from finite-time control, and shows how fixed-time cooperative control can produce the faster rate of convergence and provide an explicit estimate of the settling time independent of initial conditions. This monograph presents multiple applications of fixed-time control schemes, including to distributed optimization of multi-agent systems, making it useful to students, researchers and engineers alike.
This book focuses on non-GNSS positioning systems and approaches. Although it addresses both theoretical and practical aspects, the primary focus is on engineering practice. This is achieved by providing in-depth studies on a number of major topics such as tracking system architecture, link budget, system design, implementation, testing, and performance evaluation. It studies four positioning application cases in detail: covert vehicle tracking, horse racing, rowing, and tracking for field sports. Its comprehensive and systematic treatment of practical issues in wireless positioning makes the book particularly suitable for readers who are interested in learning about practical wireless positioning solutions. It will also benefit researchers, engineers and graduate students in fields such as positioning and navigation, geospatial engineering and telecommunications.
This book focuses on the microscopic understanding of the function of organic semiconductors. By tracing the link between their morphological structure and electronic properties across multiple scales, it represents an important advance in this direction. Organic semiconductors are materials at the interface between hard and soft matter: they combine structural variability, processibility and mechanical flexibility with the ability to efficiently transport charge and energy. This unique set of properties makes them a promising class of materials for electronic devices, including organic solar cells and light-emitting diodes. Understanding their function at the microscopic scale - the goal of this work - is a prerequisite for the rational design and optimization of the underlying materials. Based on new multiscale simulation protocols, the book studies the complex interplay between molecular architecture, supramolecular organization and electronic structure in order to reveal why some materials perform well - and why others do not. In particular, by examining the long-range effects that interrelate microscopic states and mesoscopic structure in these materials, the book provides qualitative and quantitative insights into e.g. the charge-generation process, which also serve as a basis for new optimization strategies.
The author presents current work in bond graph methodology by
providing a compilation of contributions from experts across the
world that covers theoretical topics, applications in various areas
as well as software for bond graph modeling.
Wide bandgap semiconductors, made from such materials as GaN, SiC, diamond and ZnSe, are undergoing a strong resurgence in recent years, principally because of their direct bandgaps which give them a huge advantage over the indirect gap SiC. As an example, more than 10 million blue LEDs using this technology are sold each month, and new, high-brightness (15 lumens per watt), very-long-lifetime white LEDs are under development with the potential to replace incandescent bulbs in many situations. WIDE BANDGAP SEMICONDUCTORS provides readers with a broad overview of this rapidly expanding technology, bringing them up to speed on new discoveries and commercial applications. It provides specific technical explanations of key processes such as laser diodes, LEDs and very high temperature electronic controls on engines, focusing on doping, etching, oxidation passivation, growth techniques, and more... The volume also explores the potential use of these semiconductors in HDTV, power conditioning devices, and high power microwave applications. The contributors are all experts in the fields of growth, processing, and characterization of these semiconductors, including II-VI compounds, processing techniques for SiC, GaN and diamond, and materials analysis of all wide gap semiconductors. Key Features: - Explains the development and advantages of broadgap semiconductors, showing their increasing power and their increasingly broader use in commercial and military products - Features step-by-step explanations of key processes in the fabrication of the semiconductors, including chemistry, testing, design, and more - Explores the need for advanced electronics capable of operation at 6000C and how silicon-on-insulator technology will meet this need - Provides an understanding of semiconductor chemistry, thermodynamics and etching, along with technical explanations of common devices, descriptions of processing equipment and techniques, impurity testing, implantation damage, and more |
![]() ![]() You may like...
The Analytical and Topological Theory of…
Karl H. Hofmann, Jimmie D. Lawson, …
Hardcover
R4,503
Discovery Miles 45 030
Symmetries, Differential Equations and…
Victor G. Kac, Peter J. Olver, …
Hardcover
R4,354
Discovery Miles 43 540
Representations of *-Algebras, Locally…
J.M.G. Fell, R.S. Doran
Hardcover
Modern Group Analysis: Advanced…
N.H. Ibragimov, M. Torrisi, …
Hardcover
R3,109
Discovery Miles 31 090
Lie Groups: Structure, Actions, and…
Alan Huckleberry, Ivan Penkov, …
Hardcover
Combinatorial and Additive Number Theory…
Melvyn B Nathanson
Hardcover
R6,322
Discovery Miles 63 220
Elementary Theory of Groups and Group…
Paul Baginski, Benjamin Fine, …
Hardcover
R4,210
Discovery Miles 42 100
Symmetry: Representation Theory and Its…
Roger Howe, Markus Hunziker, …
Hardcover
R3,490
Discovery Miles 34 900
Latin Squares - New Developments in the…
Jozsef Denes, A. Donald Keedwell
Hardcover
R2,081
Discovery Miles 20 810
Algebra, Geometry and Mathematical…
Abdenacer Makhlouf, Eugen Paal, …
Hardcover
R3,023
Discovery Miles 30 230
|