![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering
Doherty Power Amplifiers: From Fundamentals to Advanced Design Methods is a great resource for both RF and microwave engineers and graduate students who want to understand and implement the technology into future base station and mobile handset systems. The book introduces the very basic operational principles of the Doherty Amplifier and its non-ideal behaviors. The different transconductance requirements for carrier and peaking amplifiers, reactive element effect, and knee voltage effect are described. In addition, several methods to correct imperfections are introduced, such as uneven input drive, gate bias adaptation, dual input drive and the offset line technique. Advanced design methods of Doherty Amplifiers are also explained, including multistage/multiway Doherty power amplifiers which can enhance the efficiency of the amplification of a highly-modulated signal. Other covered topics include signal tracking operation which increases the dynamic range, highly efficient saturated amplifiers, and broadband amplifiers, amongst other comprehensive, related topics.
Micro-nanoelectronics Devices: Modeling of Diffusion and Operation Processes concentrates on the modeling of diffusion processes and the behavior of modern integrated components, from material, to architecture. It goes through the process, the device and the circuit regarding today's widely discussed nano-electronics, both from an industry perspective and that of public entities.
Handbook of Silicon Wafer Cleaning Technology, Third Edition, provides an in-depth discussion of cleaning, etching and surface conditioning for semiconductor applications. The fundamental physics and chemistry associated with wet and plasma processing are reviewed, including surface and colloidal aspects. This revised edition includes the developments of the last ten years to accommodate a continually involving industry, addressing new technologies and materials, such as germanium and III-V compound semiconductors, and reviewing the various techniques and methods for cleaning and surface conditioning. Chapters include numerous examples of cleaning technique and their results. The book helps the reader understand the process they are using for their cleaning application and why the selected process works. For example, discussion of the mechanism and physics of contamination, metal, particle and organic includes information on particle removal, metal passivation, hydrogen-terminated silicon and other processes that engineers experience in their working environment. In addition, the handbook assists the reader in understanding analytical methods for evaluating contamination. The book is arranged in an order that segments the various cleaning techniques, aqueous and dry processing. Sections include theory, chemistry and physics first, then go into detail for the various methods of cleaning, specifically particle removal and metal removal, amongst others.
Achieve first-time-success designing RF and microwave amplifiers and oscillators using the iterative synthesis techniques provided in this practical resource. The book introduces new approaches to help you estimate the 1dB compression point of class A and class B linear circuits, initialize the fundamental component voltages and currents in a harmonic balance simulator, and more easily generate load-pull contours for class A and class B transistors. Considered as a generalization of the Cripps approach, this independently developed method can be applied easily to control or predict the output power in single- or multi-stage amplifiers. Changes in the transistor's configuration, as well as feedback and loading can also be handled smoothly. This book helps you: The book also includes all of the design principles, theory, and background from the well-received first edition. It is an excellent resource for amplifier and oscillator designers, RF and microwave engineers, and university students.
This book focuses on the design, implementation and applications of embedded systems and advanced industrial controls with microcontrollers. It combines classical and modern control theories as well as practical control programming codes to help readers learn control techniques easily and effectively. The book covers both linear and nonlinear control techniques to help readers understand modern control strategies. The author provides a detailed description of the practical considerations and applications in linear and nonlinear control systems. They concentrate on the ARM (R) Cortex (R)-M4 MCU system built by Texas Instruments (TM) called TM4C123GXL, in which two ARM (R) Cortex (R)-M4 MCUs, TM4C123GH6PM, are utilized. In order to help the reader develop and build application control software for a specified microcontroller unit. Readers can quickly develop and build their applications by using sample project codes provided in the book to access specified peripherals. The book enables readers to transfer from one interfacing protocol to another, even if they only have basic and fundamental understanding and basic knowledge of one interfacing function. Classical and Modern Controls with Microcontrollers is a powerful source of information for control and systems engineers looking to expand their programming knowledge of C, and of applications of embedded systems with microcontrollers. The book is a textbook for college students majored in CE, EE and ISE to learn and study classical and modern control technologies. The book can also be adopted as a reference book for professional programmers working in modern control fields or related to intelligent controls and embedded computing and applications. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
This book presents the most important tools, techniques, strategy and diagnostic methods used in industrial engineering. The current widely accepted methods of diagnosis and their properties are discussed. Also, the possible fruitful areas for further research in the field are identified.
Spacecraft Dynamics and Control: The Embedded Model Control Approach provides a uniform and systematic way of approaching space engineering control problems from the standpoint of model-based control, using state-space equations as the key paradigm for simulation, design and implementation. The book introduces the Embedded Model Control methodology for the design and implementation of attitude and orbit control systems. The logic architecture is organized around the embedded model of the spacecraft and its surrounding environment. The model is compelled to include disturbance dynamics as a repository of the uncertainty that the control law must reject to meet attitude and orbit requirements within the uncertainty class. The source of the real-time uncertainty estimation/prediction is the model error signal, as it encodes the residual discrepancies between spacecraft measurements and model output. The embedded model and the uncertainty estimation feedback (noise estimator in the book) constitute the state predictor feeding the control law. Asymptotic pole placement (exploiting the asymptotes of closed-loop transfer functions) is the way to design and tune feedback loops around the embedded model (state predictor, control law, reference generator). The design versus the uncertainty class is driven by analytic stability and performance inequalities. The method is applied to several attitude and orbit control problems.
This thesis describes the design, development, characterisation and clinical translation of three novel devices for optical endoscopic imaging. Over the past decade, rapid innovation in optics and photonics has led to the availability of low-cost and high-performance optical technologies that can be exploited for biomedical applications, but relatively few have been translated into clinic. The work presented outlines for the first time, a comprehensive analysis of the common barriers and unique challenges associated with the translation of optical imaging techniques. To assist developers streamline translation of optical imaging devices in future, a roadmap to clinical translation is outlined, and key translational characteristics are defined. Guided by these, subsequent development of endoscopic devices resulted in preparation and approval of endoscopes for first in human trials in the oesophagus, for early detection of cancer, and in the brain, for delineation of tumour during surgical resection. The thesis culminates in the presentation of results from the first in human use of a compact multispectral endoscope for imaging endogenous tissue contrast in the oesophagus. With continuation of the work as outlined at the end of this thesis, the novel techniques described have the potential to improve the standard of care in their respective indications.
The art of RF circuit design made simple... Radio Frequency circuits are the fundamental building blocks in a vast array of consumer electronics and wireless communication devices. Jeremy Everard's unique combination of theory and practice provides insight into the principles of operation, together with invaluable guidance to developing robust and long-lasting circuit designs. Features include:
The only one-stop reference to design, analysis, and manufacturing concepts for power devices utilizing HTS. High temperature superconductors (HTS) have been used for building many devices for electric grids worldwide and for large ship propulsion motors for the U.S. Navy. And yet, there has been no single source discussing theory and design issues relating to power applications of HTS--until now. This book provides design and analysis for various devices and includes examples of devices built over the last decade. Starting with a complete overview of HTS, the subsequent chapters are dedicated to specific devices: cooling and thermal insulation systems; rotating AC and DC machines; transformers; fault current limiters; power cables; and Maglev transport. As applicable, each chapter provides a history of the device, principles, configuration, design and design challenges, prototypes, and manufacturing issues, with each ending with a summary of the material covered. The design analysis and design examples provide critical insight for readers to successfully design their own devices. Original equipment manufacturer (OEM) designers, industry and utilities users, universities and defense services research groups, and senior/postgraduate engineering students and instructors will rely on this resource. "HTS technology reduces electric losses and increases the
efficiency of power equipment. This book by Swarn Kalsi, a leading
expert on the HTS subject, provides a survey of the HTS technology
and the design rules, performance analyses, and manufacturing
concepts for power application-related devices. It compares
conventional and HTS technology approaches for device design and
provides significant examples of devices utilizing the HTS
technology today. The book is useful for a broad spectrum of
professionals worldwide: students, teaching staff, and OEM
designers as well as users in industry and electric
utilities."
Handbook of Thin Film Deposition, Fourth Edition, is a comprehensive reference focusing on thin film technologies and applications used in the semiconductor industry and the closely related areas of thin film deposition, thin film micro properties, photovoltaic solar energy applications, materials for memory applications and methods for thin film optical processes. The book is broken up into three sections: scaling, equipment and processing, and applications. In this newly revised edition, the handbook will also explore the limits of thin film applications, most notably as they relate to applications in manufacturing, materials, design and reliability.
Crompton's Battery Reference Book has become the standard reference
source for a wide range of professionals and students involved in
designing, manufacturing, and specifying products and systems that
use batteries.
This book presents novel research ideas and offers insights into radar system design, artificial intelligence and signal processing applications. Further, it proposes a new concept of antenna spatial polarization characteristics (SPC), suggesting that the antenna polarization is a function of the spatial direction and providing new ideas for radar signal processing (RSP) and anti-jamming. It also discusses the design of an advanced signal-processing algorithm, and proposes new polarimetric and anti-jamming methods using antenna inherent properties. The book helps readers discover the potential of radar information processing and improve its anti-interference and target identification ability. It is of interest to university researchers, radar engineers and graduate students in computer science and electronics who wish to learn the core principles, methods, algorithms, and applications of RSP.
Some of the most original and productive research specialists in the field of particle-fluid flow systems are assembled in this book, which is an important and current reference volume. It focuses on methods of measurement and options for those performing research and evaluation of particle-fluid flow systems such as pneumatic conveying. The systems and techniques covered in the text cover a wide range of particle sizes and concentrations, from tracers to packed beds. As seen in this book, the increased use of computers, high sampling frequency and the non-invasive measurements make possible measurements of both average properties and their fluctuations. The trend toward non-invasive measurements based on acoustics, laser, nuclear, and electromagnetic devices is focused upon throughout the text. Key Features: - Covers the latest trends in measurement techniques. - Serves as reference, guide, and text for academic courses. - Authors include the most productive and original researchers in the field.
Robotic and mechatronic systems, autonomous vehicles, electric power systems and smart grids, as well as manufacturing and industrial production systems can exhibit complex nonlinear dynamics or spatio-temporal dynamics which need to be controlled to ensure good functioning and performance. In this comprehensive reference, the authors present new and innovative control and estimation methods and techniques based on dynamical nonlinear and partial differential equation systems. Such results can be classified in five main domains for the control of complex nonlinear dynamical systems using respectively methods of approximate (local) linearization, methods of exact (global) linearization, Lyapunov stability approaches, control and estimation of distributed parameter systems and stochastic estimation and fault diagnosis methods. Control and Estimation of Dynamical Nonlinear and Partial Differential Equation Systems: Theory and applications will be of interest to electrical engineering, physics, computer science, robotics and mechatronics researchers and professionals working on control problems, condition monitoring, estimation and fault diagnosis and isolation problems. It will also be useful to skilled technical personnel working on applications in robotics, energy conversion, transportation and manufacturing.
This book describes for readers various technical outcomes from the EU-project IoSense. The authors discuss sensor integration, including LEDs, dust sensors, LIDAR for automotive driving and 8 more, demonstrating their use in simulations for the design and fabrication of sensor systems. Readers will benefit from the coverage of topics such as sensor technologies for both discrete and integrated innovative sensor devices, suitable for high volume production, electrical, mechanical, security and software resources for integration of sensor system components into IoT systems and IoT-enabling systems, and IoT sensor system reliability. Describes from component to system level simulation, how to use the available simulation techniques for reaching a proper design with good performance; Explains how to use simulation techniques such as Finite Elements, Multi-body, Dynamic, stochastics and many more in the virtual design of sensor systems; Demonstrates the integration of several sensor solutions (thermal, dust, occupancy, distance, awareness and more) into large-scale system solutions in several industrial domains (Lighting, automotive, transport and more); Includes state-of-the-art simulation techniques, both multi-scale and multi-physics, for use in the electronic industry.
"God made solids, but surfaces were the work of the devil." This statement by Nobel prize winner Wolfgang Paul emphasizes the diabolic nature of surfaces. Since surface properties deviate significantly from the bulk solid state, surface studies can be puzzling, misleading, and quite exciting! This book is an introduction to the basics of surface science including thermodynamics, surface structure, experimental probes, spectroscopy, microscopy, and ion-scattering. Surfaces are the external border of materials to the external worlds, thus by exploring surfaces one can investigate the material.
The author presents current work in bond graph methodology by
providing a compilation of contributions from experts across the
world that covers theoretical topics, applications in various areas
as well as software for bond graph modeling.
The book describes an approach to the multi-agent systems (MAS) design for applications of robotic soccer in the MiroSot category. The described MAS is designed for dynamic, quickly changing environments, in which not only the actions of our MAS are observed, but also those of the opposing MAS. It actively tries to affect the environment to score goals faster than the opposing MAS. Multi-agent systems (MAS) are mostly applied in the environments in which they exist and act without an opposing system. The book also describes strategies based on a supervisor that makes decisions depending on behavior prediction of the opposing MAS and the ball movement in the working place. A sophisticated distribution of tasks was designed for each agent to cooperate in order score goals as fast as possible. Simultaneously, these agents try, by permitted means, to prevent the enemy agents from scoring goals. The approach described is an excellent guide to the constantly evolving abilities of mobile robotics, both for real-world applications, such as cooperation of multiple robots in life-saving activities, and for the steadily developing applications of mobile robots in various robotic competitions (e.g. Robocup, etc.). The book provides readers with high-level knowledge on how to design strategies and how to implement such systems, and the ideas presented enable them to further refine the approach utilizing the latest hardware and use it in new systems implementations of sophisticated intelligent engineering.
This book describes the bottleneck faced soon by designers of traditional CMOS devices, due to device scaling, power and energy consumption, and variability limitations. This book aims at bridging the gap between device technology and architecture/system design. Readers will learn about challenges and opportunities presented by "beyond-CMOS devices" and gain insight into how these might be leveraged to build energy-efficient electronic systems.
The field of soft computing is emerging from the cutting edge
research over the last ten years devoted to fuzzy engineering and
genetic algorithms. The subject is being called soft computing and
computational intelligence. With acceptance of the research
fundamentals in these important areas, the field is expanding into
direct applications through engineering and systems science.
This book offers a complete guide to designing Linear Fresnel Reflector Systems for concentrating solar radiation. It includes theoretical analyses, computational tools and mathematical formulae to facilitate the development, design, construction and application of these systems. In addition, the book presents a concise yet thorough treatment of the theory behind these systems, and provides useful and efficient calculation procedures that can be used to model and develop their practical applications. Along with the theoretical analyses provided in the book, the physical background is explained using mathematical formulae, illustrations, graphs and tables. Methods are presented for solving the non-linear mathematical systems that describe a significant variety of cases. In addition, MATLAB codes are supplied (both in the text and online). Consequently, readers interested in applying the methodology presented here will have all the source codes at hand, allowing them to easily expand on them by introducing appropriate modifications for their respective design configuration. Given its scope, the book will be of interest to engineers and researchers, who can use their scientific background to help them develop more energy-efficient Linear Fresnel Reflector systems. It will also appeal to students studying these systems for the first time, as it supplies a comprehensive overview of their theoretical analysis and applications.
PID Control with Intelligent Compensation for Exoskeleton Robots explains how to use neural PD and PID controls to reduce integration gain, and provides explicit conditions on how to select linear PID gains using proof of semi-global asymptotic stability and local asymptotic stability with a velocity observer. These conditions are applied in both task and joint spaces, with PID controllers compensated by neural networks. This is a great resource on how to combine traditional PD/PID control techniques with intelligent control. Dr. Wen Yu presents several leading-edge methods for designing neural and fuzzy compensators with high-gain velocity observers for PD control using Lyapunov stability. Proportional-integral-derivative (PID) control is widely used in biomedical and industrial robot manipulators. An integrator in a PID controller reduces the bandwidth of the closed-loop system, leads to less-effective transient performance and may even destroy stability. Many robotic manipulators use proportional-derivative (PD) control with gravity and friction compensations, but improved gravity and friction models are needed. The introduction of intelligent control in these systems has dramatically changed the face of biomedical and industrial control engineering.
This book highlights practical solutions for flight safety improvement techniques, which are currently the focus of the International Civil Aviation Organization (ICAO). It has become clear that, in order to rapidly and significantly improve flight safety, the integrated use of new aeronautical technologies is called for. Considering the size of the aviation fleet, its constant growth and the long service lives of aircraft, new technologies should be adapted both to cutting-edge air navigation systems and to those that have been used for over a decade. Concretely, the book discusses methodological approaches to the construction of ground and on-board avionics that make it possible to achieve improved flight safety using innovative new methods. The proposed approaches are illustrated with real-world examples of e.g. satellite-based navigation systems and enhanced ground proximity warning systems. The book is written for professionals involved in the development of avionics systems, as well as students, researchers and experts in the field of radiolocation, radio navigation and air traffic control, the book will support the development and modeling of radio technical complexes, as well as the analysis of complex radio technical systems. |
You may like...
Framing the Dialogues: How to Read…
Eleni Kaklamanou, Maria Pavlou, …
Hardcover
R4,074
Discovery Miles 40 740
The Oxford Handbook of Maximus the…
Pauline Allen, Bronwen Neil
Hardcover
R4,165
Discovery Miles 41 650
|