![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering
This monograph presents an intuitive theory of trial wave functions for strongly interacting fermions in fractional quantum Hall states. The correlation functions for the proposed fermion interactions follow a novel algebraic approach that harnesses the classical theory of invariants and semi-invariants of binary forms. This approach can be viewed as a fitting and far-reaching generalization of Laughlin's approach to trial wave functions. Aesthetically viewed, it illustrates an attractive symbiosis between the theory of invariants and the theory of correlations. Early research into numerical diagonalization computations for small numbers of electrons shows strong agreement with the constructed trial wave functions.The monograph offers researchers and students of condensed matter physics an accessible discussion of this interesting area of research.
IMRET 5 featured more than 80 oral and poster communications, covering the entire interdisciplinary field from design, production, modeling and characterization of microreactor devices to application of microstructured systems for production, energy and transportation, including many analytical and biological applications. A particularly strong topic was the investigation of the potential of microstructuring of reactors and systems components for process intensification. Perspectives of combining local, in situ, data acquisition with appropriate microstructuring of actuators and components within chemical and biological devices were explored in order to enhance process performance and facilitate process control.
This thesis presents first successful experiments to carrier-envelope-phase stabilize a high-power mode-locked thin-disk oscillator and to compress the pulses emitted from this laser to durations of only a few-optical cycles. Moreover, the monograph introduces several methods to achieve power-scalability of compression and stabilization techniques. All experimental approaches are compared in detail and may serve as a guideline for developing high-power waveform controlled, few-cycle light sources which offer tremendous potential to exploit extreme nonlinear optical effects at unprecedentedly high repetition rates and to establish table-top infrared light sources with a unique combination of brilliance and bandwidth. As an example, the realization of a multi-Watt, multi-octave spanning, mid-infrared femtosecond source is described. The thesis starts with a basic introduction to the field of ultrafast laser oscillators. It subsequently presents additional details of previously published research results and establishes a connection between them. It therefore addresses both newcomers to, and experts in the field of high-power ultrafast laser development.
The book gathers the chapters of Cognitive InfoCommunication research relevant to a variety of application areas, including data visualization, emotion expression, brain-computer interfaces or speech technologies. It provides an overview of the kind of cognitive capabilities that are being analyzed and developed. Based on this common ground, it may become possible to see new opportunities for synergy among disciplines that were heretofore viewed as being separate. Cognitive InfoCommunication begins by modeling human cognitive states and aptitudes in order to better understand what the user of a system is capable of comprehending and doing. The patterns of exploration and the specific tools that are described can certainly be of interest and of great relevance for all researchers who focus on modeling human states and aptitudes. This innovative research area provides answers to the latest challenges in influence of cognitive states and aptitudes in order to facilitate learning or generally improve performance in certain cognitive tasks such as decision making. Some capabilities are purely human, while others are purely artificial, but in general this distinction is rarely clear-cut. Therefore, when discussing new human cognitive capabilities, the technological background which makes them possible cannot be neglected, and indeed often plays a central role. This book highlights the synergy between various fields that are perfectly fit under the umbrella of CogInfoCom and contribute to understanding and developing new, human-artificial intelligence hybrid capabilities. These, merged capabilities are currently appearing, and the importance of the role they play in everyday life are unique to the cognitive entity generation that is currently growing up.
This textbook provides a sound foundation in physical optics by covering key concepts in a rigorous but accessible manner. Propagation of electromagnetic waves is examined from multiple perspectives, with explanation of which viewpoints and methods are best suited to different situations. After an introduction to the theory of electromagnetism, reflection, refraction, and dispersion, topics such as geometrical optics, interference, diffraction, coherence, laser beams, polarization, crystallography, and anisotropy are closely examined. Optical elements, including lenses, mirrors, prisms, classical and Fabry-Perot interferometers, resonant cavities, multilayer dielectric structures, interference and spatial filters, diffraction gratings, polarizers, and birefringent plates, are treated in depth. The coverage also encompasses such seldom-covered topics as modeling of general astigmatism via 4x4 matrices, FFT-based numerical methods, and bianisotropy, with a relativistic treatment of optical activity and the Faraday and Fresnel-Fizeau effects. Finally, the history of optics is discussed.
This book highlights operation principles for Air Traffic Control Automated Systems (ATCAS), new scientific directions in design and application of dispatching training simulators and parameters of ATCAS radio equipment items for aircraft positioning. This book is designed for specialists in air traffic control and navigation at a professional and scientific level. The following topics are also included in this book: personnel actions in emergency, including such unforeseen circumstances as communication failure, airplane wandering off course, unrecognized aircraft appearance in the air traffic service zone, aerial target interception, fuel draining, airborne collision avoidance system (ACAS) alarm, emergency stacking and volcanic ash cloud straight ahead.
This book provides an insight into recent technological trends and innovations in solutions and platforms to improve mobility of visually impaired people. The authors' goal is to help to contribute to the social and societal inclusion of the visually impaired. The book's topics include, but are not limited to, obstacle detection systems, indoor and outdoor navigation, transportation sustainability systems, and hardware/devices to aid visually impaired people. The book has a strong focus on practical applications tested in a real environment. Applications include city halls, municipalities, and companies that must keep up to date with recent trends in platforms, methodologies and technologies to promote urban mobility. Also discuss are broader realms including education, health, electronics, tourism, and transportation. Contributors include a variety of researchers and practitioners around the world.
This book contains new and useful materials concerning fuzzy fractional differential and integral operators and their relationship. As the title of the book suggests, the fuzzy subject matter is one of the most important tools discussed. Therefore, it begins by providing a brief but important and new description of fuzzy sets and the computational calculus they require. Fuzzy fractals and fractional operators have a broad range of applications in the engineering, medical and economic sciences. Although these operators have been addressed briefly in previous papers, this book represents the first comprehensive collection of all relevant explanations. Most of the real problems in the biological and engineering sciences involve dynamic models, which are defined by fuzzy fractional operators in the form of fuzzy fractional initial value problems. Another important goal of this book is to solve these systems and analyze their solutions both theoretically and numerically. Given the content covered, the book will benefit all researchers and students in the mathematical and computer sciences, but also the engineering sciences.
This book presents selected papers from The 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2019). Focusing on novel architecture theories, tools, methods, and procedures for digital design and construction in architecture, it promotes dialogs between architecture, engineer, computer science, robotics, and other relevant disciplines to establish a new way of production in the building industry in the digital age. The contents make valuable contributions to academic researchers and engineers in the industry. At the same time, it offers readers new ideas for the application of digital technology.
This book offers a tutorial on the response of materials to lasers, with an emphasis on simple, intuitive models with analytical and mathematical solutions, using techniques such as Laplace Transformation to solve most complex heat conduction equations. It examines the relationship between existing thermal parameters of simple metals and looks at the characteristics of materials and their properties in order to investigate and perform theoretical analysis from a heat conduction perspective mathematically. Topics discussed include optical reflectivity of metals at infrared (IR) wavelengths, laser-induced heat flow in materials, the effects of melting and vaporization, the impulse generated in materials by pulsed radiation, and the influence of the absorption in the blow-off region in irradiated material. Written for engineers, scientists, and graduate-level engineering and physics students, Thermal Effects of High Power Laser Energy on Materials provides an in-depth look at high energy laser technology and its potential industrial and commercial applications in such areas as precision cutting, LIDAR and LADAR, and communications. The knowledge gained from this allows you to apply spaced-based relay mirror in order to compensate laser beam divergence back to its original coherency by preventing further thermal blooming that takes place during laser beam propagation through the atmosphere. Examines the state-of-the-art in currently available high energy laser technologies; Includes computer codes that deal with the response of materials to laser radiation; Provides detailed mathematical solutions of thermal response to laser radiation.
The book investigates fundamental issues in flexible manipulator systems, including distributed parameter modeling and boundary controller design. It presents theoretical explorations of several fundamental problems concerning the dynamics and control of these systems. By integrating fresh concepts and results to form a systematic approach to control, it also provides a basic theoretical framework. In turn, the book offers a comprehensive treatment of flexible manipulator systems, addressing topics ranging from related distributed parameter modeling and advanced boundary controller design for these systems with input constraint, to active control with output constraint. In brief, the book addresses dynamical analysis and control design for flexible manipulator systems. Though primarily intended for researchers and engineers in the control system and mechanical engineering community, it can also serve as supplemental reading on the modeling and control of flexible manipulator systems at the postgraduate level.
This book offers a collection of original peer-reviewed contributions presented at the 3rd International and 18th National Conference on Machines and Mechanisms (iNaCoMM), organized by Division of Remote Handling & Robotics, Bhabha Atomic Research Centre, Mumbai, India, from December 13th to 15th, 2017 (iNaCoMM 2017). It reports on various theoretical and practical features of machines, mechanisms and robotics; the contributions include carefully selected, novel ideas on and approaches to design, analysis, prototype development, assessment and surveys. Applications in machine and mechanism engineering, serial and parallel manipulators, power reactor engineering, autonomous vehicles, engineering in medicine, image-based data analytics, compliant mechanisms, and safety mechanisms are covered. Further papers provide in-depth analyses of data preparation, isolation and brain segmentation for focused visualization and robot-based neurosurgery, new approaches to parallel mechanism-based Master-Slave manipulators, solutions to forward kinematic problems, and surveys and optimizations based on historical and contemporary compliant mechanism-based design. The spectrum of contributions on theory and practice reveals central trends and newer branches of research in connection with these topics.
Providing an introduction to the design of embedded microprocessor systems, this edition covers everything from the initial concept through to debugging the final result. It also includes material on DMA, interrupts and an emphasis throughout on the real-time nature of embedded systems. The book is not limited to describing any specific processor family, but covers the operation of, and interfaces to, several types of processors with an emphasis on cost and design trade-offs Included throughout the book are numerous examples, tips, and pitfalls to help readers find out how to implement faster and better design processes and avoid time-consuming and expensive mistakes. The author describes the entire process of designing circuits, and the software that controls them, assessing the system requirements, as well as testing and debugging systems. In this third edition, there is an expanded section on debug which includes avoiding common hardware, software and interrupt problems. Other added features include an expanded section on system integration and debug to address the capabilities of more recent emulators and debuggers, a section about combination microcontroller/PLD devices, and
This book presents research dedicated to solving scientific and technological problems in many areas of electronics, photonics and renewable energy. Energy and information are interconnected and are essential elements for the development of human society. Transmission, processing and storage of information requires energy consumption, while the efficient use and access to new energy sources requires new information (ideas and expertise) and the design of novel systems such as photovoltaic devices, fuel cells and batteries. Semiconductor physics creates the knowledge base for the development of information (computers, cell phones, etc.) and energy (photovoltaic) technologies. The exchange of ideas and expertise between these two technologies is critical and expands beyond semiconductors. Continued progress in information and renewable energy technologies requires miniaturization of devices and reduction of costs, energy and material consumption. The latest generation of electronic devices is now approaching nanometer scale dimensions, new materials are being introduced into electronics manufacturing at an unprecedented rate, and alternative technologies to mainstream CMOS are evolving. Nanotechnology is widely accepted as a source of potential solutions in securing future progress for information and energy technologies. Semiconductor Nanotechnology features chapters that cover the following areas: atomic scale materials design, bio- and molecular electronics, high frequency electronics, fabrication of nanodevices, magnetic materials and spintronics, materials and processes for integrated and subwave optoelectronics, nanoCMOS, new materials for FETs and other devices, nanoelectronics system architecture, nano optics and lasers, non-silicon materials and devices, chemical and biosensors, quantum effects in devices, nano science and technology applications in the development of novel solar energy devices, and fuel cells and batteries.
This book presents the proceedings of the 30th International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2021, held in Poitiers, France, 21-23 June 2021. It gathers contributions by researchers from several countries on all major areas of robotic research, development and innovation, as well as new applications and current trends. The topics covered include: novel designs and applications of robotic systems, intelligent cooperating and service robots, advanced robot control, human-robot interfaces, robot vision systems, mobile robots, humanoid and walking robots, bio-inspired and swarm robotic systems, aerial, underwater and spatial robots, robots for ambient assisted living, medical robots and bionic prostheses, cognitive robots, cloud robotics, ethical and social issues in robotics, etc. Given its scope, the book offers a source of information and inspiration for researchers seeking to improve their work and gather new ideas for future developments.
Handbook of Organic Materials for Electronic and Photonic Devices, Second Edition, provides an overview of the materials, mechanisms, characterization techniques, structure-property relationships, and most promising applications of organic materials. This new release includes new content on emerging organic materials, expanded content on the basic physics behind electronic properties, and new chapters on organic photonics. As advances in organic materials design, fabrication, and processing that enabled charge unprecedented carrier mobilities and power conversion efficiencies have made dramatic advances since the first edition, this latest release presents a necessary understanding of the underlying physics that enabled novel material design and improved organic device design.
This monograph introduces recent developments in formation control of distributed-agent systems. Eschewing the traditional concern with the dynamic characteristics of individual agents, the book proposes a treatment that studies the formation control problem in terms of interactions among agents including factors such as sensing topology, communication and actuation topologies, and computations. Keeping pace with recent technological advancements in control, communications, sensing and computation that have begun to bring the applications of distributed-systems theory out of the industrial sphere and into that of day-to-day life, this monograph provides distributed control algorithms for a group of agents that may behave together. Unlike traditional control laws that usually require measurements with respect to a global coordinate frame and communications between a centralized operation center and agents, this book provides control laws that require only relative measurements and communications between agents without interaction with a centralized operator. Since the control algorithms presented in this book do not require any global sensing and any information exchanges with a centralized operation center, they can be realized in a fully distributed way, which significantly reduces the operation and implementation costs of a group of agents. Formation Control will give both students and researchers interested in pursuing this field a good grounding on which to base their work.
In November 2001 the Mathematical Research Center at Oberwolfach, Germany, hosted the third Conference on Mathematical Models and Numerical Simulation in Electronic Industry. It brought together researchers in mathematics, electrical engineering and scientists working in industry. The contributions to this volume try to bridge the gap between basic and applied mathematics, research in electrical engineering and the needs of industry.
This book presents how to program Single Board Computers (SBCs) for Internet of Things (IoT) rapid prototyping with popular tools such as Raspberry Pi, Arduino, Beagle Bone, and NXP boards. The book provides novel programs to solve new technological real-time problems. The author addresses programming, PCB design and Mechanical Cad design all in single volume, easing learners into incorporating their ideas as prototype. The aim of the book is to provide programming, sensors interfacing, PCB design, and Mechanical Cad design to and create rapid prototyping. The author presents the methodologies of rapid prototyping with KiCAD design and Catia software, used to create ready to mount solutions. The book covers scripting- based and drag/drop- based programming for different problems and data gathering approach.
LEGO MINDSTORMS lets you design and program robots that can do just
about anything
Mechanical and thermal properties are reviewed and electrical and magnetic properties are emphasized. Basics of symmetry and internal structure of crystals and the main properties of metals, dielectrics, semiconductors, and magnetic materials are discussed. The theory and modern experimental data are presented, as well as the specifications of materials that are necessary for practical application in electronics. The modern state of research in nanophysics of metals, magnetic materials, dielectrics and semiconductors is taken into account, with particular attention to the influence of structure on the physical properties of nano-materials. The book uses simplified mathematical treatment of theories, while emphasis is placed on the basic concepts of physical phenomena in electronic materials. Most chapters are devoted to the advanced scientific and technological problems of electronic materials; in addition, some new insights into theoretical facts relevant to technical devices are presented. Electronic Materials is an essential reference for newcomers to the field of electronics, providing a fundamental understanding of important basic and advanced concepts in electronic materials science.
This book offers the first comprehensive introduction to the inerter, its successful application in Formula One racing, and other state-of-the-art applications in vibration control. It presents fundamental analysis results and design methods for inerter-based vibration control systems. Providing comprehensive information on the inerter, a pioneering mechanical element invented by Prof. Malcolm C. Smith at Cambridge University in 2002, it will be of considerable interest to readers with a background in control theory, mechanical vibration or related subjects.
This book highlights the prevention of possible accidents and crashes of aircrafts by analyzing the many factors that affect such events. It includes the theoretical study of known ideas and concepts, as well as a set of new methods and mathematical models. It contains factual information to investigate famous disasters and aviation accidents with aircrafts. The book proposes methods and models that can be the basis in developing guidance material for decision-making by the flight crew and experts in air traffic control. Some of the contents presented in this book are also useful in the design and operation of data transmission systems of aircraft. The book is intended for engineering and technical specialists engaged in the development, manufacturing and operations of onboard radio electronic systems of aircraft and ground-based radio engineering support for flights, as well as graduate students and senior students of radio engineering specialties. It is useful to researchers and managers whose activities are related to air traffic control.
This book presents peer-reviewed articles from the 20th International Symposium on Optomechatronic Technologies (ISOT 2019), held in Goa, India. The symposium brought together students, researchers, professionals, and academicians in the field of optomechatronics and related areas on a common platform conducive to academic interaction with business professionals.
This book gathers papers presented at the 5th International Conference on Sustainable Design and Manufacturing (SDM-18), held in Gold Coast, Australia in June 2018. The conference covered a wide range of topics, including: sustainable product design and service innovation, sustainable processes and technology for the manufacturing of sustainable products, sustainable manufacturing systems and enterprises, decision support for sustainability, and the study of the societal impact of sustainability including research on the circular economy. The corresponding application areas are wide and varied. The aim of cutting-edge research into sustainable design and manufacturing is to enable the manufacturing industry to grow by adopting more advanced technologies, and at the same time improve its sustainability by reducing its environmental impact. With these goals in mind, the book provides an excellent overview of the latest research and development in the area of Sustainable Design and Manufacturing. |
![]() ![]() You may like...
Handbook of Electronic Assistive…
Ladan Najafi, Donna Cowan
Paperback
Dark Silicon and Future On-chip Systems…
Suyel Namasudra, Hamid Sarbazi-Azad
Hardcover
R4,186
Discovery Miles 41 860
Silicon Photonics, Volume 99
Chennupati Jagadish, Sebastian Lourdudoss, …
Hardcover
R5,545
Discovery Miles 55 450
Smart Sensors and MEMS - Intelligent…
S. Nihtianov, A. Luque
Paperback
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R4,145
Discovery Miles 41 450
|