![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > General
This timely resource fills a gap in existing literature on mathematical modeling by presenting both theory- and evidence-based ideas for its teaching and learning. The book outlines four key professional competencies that must be developed in order to effectively and appropriately teach mathematical modeling, and in so doing it seeks to reduce the discrepancies between educational policy and educational research versus everyday teaching practice. Among the key competencies covered are: Theoretical competency for practical work. Task competency for instructional flexibility. Instructional competency for effective and quality lessons. Diagnostic competency for assessment and grading. Learning How to Teach Mathematical Modeling in School and Teacher Education is relevant to practicing and future mathematics teachers at all levels, as well as teacher educators, mathematics education researchers, and undergraduate and graduate mathematics students interested in research based methods for teaching mathematical modeling.
This book presents an elementary introduction to the theory of noncausal stochastic calculus that arises as a natural alternative to the standard theory of stochastic calculus founded in 1944 by Professor Kiyoshi Ito. As is generally known, Ito Calculus is essentially based on the "hypothesis of causality", asking random functions to be adapted to a natural filtration generated by Brownian motion or more generally by square integrable martingale. The intention in this book is to establish a stochastic calculus that is free from this "hypothesis of causality". To be more precise, a noncausal theory of stochastic calculus is developed in this book, based on the noncausal integral introduced by the author in 1979. After studying basic properties of the noncausal stochastic integral, various concrete problems of noncausal nature are considered, mostly concerning stochastic functional equations such as SDE, SIE, SPDE, and others, to show not only the necessity of such theory of noncausal stochastic calculus but also its growing possibility as a tool for modeling and analysis in every domain of mathematical sciences. The reader may find there many open problems as well.
The Book of Squares by Fibonacci is a gem in the mathematical literature and one of the most important mathematical treatises written in the Middle Ages. It is a collection of theorems on indeterminate analysis and equations of second degree which yield, among other results, a solution to a problem proposed by Master John of Palermo to Leonardo at the Court of Frederick II. The book was dedicated and presented to the Emperor at Pisa in 1225. Dating back to the 13th century the book exhibits the early and continued fascination of men with our number system and the relationship among numbers with special properties such as prime numbers, squares, and odd numbers. The faithful translation into modern English and the commentary by the translator make this book accessible to professional mathematicians and amateurs who have always been intrigued by the lure of our number system.
The advent of fast and sophisticated computer graphics has brought dynamic and interactive images under the control of professional mathematicians and mathematics teachers. This volume in the NATO Special Programme on Advanced Educational Technology takes a comprehensive and critical look at how the computer can support the use of visual images in mathematical problem solving. The contributions are written by researchers and teachers from a variety of disciplines including computer science, mathematics, mathematics education, psychology, and design. Some focus on the use of external visual images and others on the development of individual mental imagery. The book is the first collected volume in a research area that is developing rapidly, and the authors pose some challenging new questions.
This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields.
This epoch-making and monumental work on Vedic Mathematics unfolds a new method of mapproach, It relates to the truth of numbers and magnitudes equally applicable to all sciences and arts. The book brings to light how great and true knowledge is born of intuition.
This solutions booklet is a supplement to the text book 'Group Theory in Physics' by Wu-Ki Tung. It will be useful to lecturers and students taking the subject as detailed solutions are given.
Since its first volume in 1960, Advances in Computers has presented detailed coverage of innovations in computer hardware, software, theory, design, and applications. It has also provided contributors with a medium in which they can explore their subjects in greater depth and breadth than journal articles usually allow. As a result, many articles have become standard references that continue to be of significant, lasting value in this rapidly expanding field.
This volume documents on-going research and theorising in the sub-field of mathematics education devoted to the teaching and learning of mathematical modelling and applications. Mathematical modelling provides a way of conceiving and resolving problems in the life world of people whether these range from the everyday individual numeracy level to sophisticated new problems for society at large. Mathematical modelling and real world applications are considered as having potential for multi-disciplinary work that involves knowledge from a variety of communities of practice such as those in different workplaces (e.g., those of educators, designers, construction engineers, museum curators) and in different fields of academic endeavour (e.g., history, archaeology, mathematics, economics). From an educational perspective, researching the development of competency in real world modelling involves research situated in crossing the boundaries between being a student engaged in modelling or mathematical application to real word tasks in the classroom, being a teacher of mathematical modelling (in or outside the classroom or bridging both), and being a modeller of the world outside the classroom. This is the focus of many of the authors of the chapters in this book. All authors of this volume are members of the International Community of Teachers of Mathematical Modelling (ICTMA), the peak research body into researching the teaching and learning of mathematical modelling at all levels of education from the early years to tertiary education as well as in the workplace.
AN ELEMENTARY TREATISE ON DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS by H. T. H. PIAGGIO, M. A., D. Sc. PROFESSOR OF MATHEMATICS, UNIVERSITY COLLEGE, NOTTINGHAM SENIOR SCHOLAR OF ST. JOHNS COLLEGE, CAMBRIDGE LONDON G. BELL AND SONS, LTD, 1949 First published May 1920. Reprinted 1921, 1924, 1925, 1926 Revised and Enlarged Edition 1922 reprinted 1929, 1931, 1933, 1937, 1959, 1940, 1911, 1942, 1943, 1944, 1945, 1946, 1949. PRINTED IN GREAT BRITAIN BY ROBERT MACLKHOSE AND CO. LTD. THE UNIVERSITY PRESS, GLASGOW. PREFACE THE Theory of Differential Equations, said Sophus Lie, is the most important branch of modern mathematics. The subject may be considered to occupy a central position from which different lines of development extend in many directions. If we travel along the purely analytical path, we are soon led to discuss Infinite Series, Existence Theorems and the Theory of Functions. Another leads us to the Differential Geometry of Curves and Surfaces. Between the two lies the path first discovered by Lie, leading to continuous groups of transformation and their geometrical interpretation. Diverging in another direction, we are led to the study of mechanical and electrical vibrations of all kinds and the important phenomenon of resonance. Certain partial differential equations form the starting point for the study of the conduction of heat, the transmission of electric waves, and many other branches of physics. Physical Chemistry, with its law of mass-action, is largely concerned with certain differential equations. The object of this book is to give an account of the central parts of the subject in as simple a form as possible, suitable for those with no previous knowledge of it, andyet at the same time to point out the different directions in which it may be developed. The greater part of the text and the examples in the body of it will be found very easy. The only previous knowledge assumed is that of the elements of the differential and integral calculus and a little coordinate geometry. The miscellaneous examples at the end of the various chapters are slightly harder. They contain several theorems of minor importance, with hints that should be sufficient to enable the student to solve them. They also contain geometrical and physical applications, but great care has been taken to state the questions m such a way that no knowledge of physics is required. For instance, one question asks for a solution of a certain partial VI PREFACE differential equation in terms of certain constants and variables. This may be regarded as a piece of pure mathematics, but it is immediately followed by a note pointing out that the work refers to a well-known experiment in heat, and giving the physical meaning of the constants and variables concerned. Finally, at the end of the book is given a set of 115 examples of much greater difficulty, most of which are taken from university examination papers. I have to thank the Universities of London, Sheffield and Wales, and the Syndics of the Cambridge University Press for their kind per mission in allowing me to use these. The book covers the course in differential equations required for the London B. Sc. Honours or Schedule A of the Cambridge Mathematical Tripos, Part II., and also includes some of the work required for the London M. Sc. or Schedule B of the Mathematical Tripos. An appendix gives suggestions for further reading. Thenumber of examples, both worked and unworked, is very large, and the answers to the unworked ones are given at the end of the book. A few special points may be mentioned. The graphical method in Chapter I. based on the MS. kindly lent me by Dr. Brodetsky of a paper he read before the Mathematical Association, and on a somewhat similar paper by Prof. Takeo Wada has not appeared before in any text-book. The chapter dealing with numerical integration deals with the subject rather more fully than usual...
Mathematics for Physical Science and Engineering is a complete text in mathematics for physical science that includes the use of symbolic computation to illustrate the mathematical concepts and enable the solution of a broader range of practical problems. This book enables professionals to connect their knowledge of mathematics to either or both of the symbolic languages Maple and Mathematica. The book begins by introducing the reader to symbolic computation and how it can be applied to solve a broad range of practical problems. Chapters cover topics that include: infinite series; complex numbers and functions; vectors and matrices; vector analysis; tensor analysis; ordinary differential equations; general vector spaces; Fourier series; partial differential equations; complex variable theory; and probability and statistics. Each important concept is clarified to students through the use of a simple example and often an illustration. This book is an ideal reference for upper level undergraduates in physical chemistry, physics, engineering, and advanced/applied mathematics courses. It will also appeal to graduate physicists, engineers and related specialties seeking to address practical problems in physical science.
Professional mathematicians often speak of the beauty of
mathematics and the elegance of its solutions. Yet the esthetic
appeal of math is rarely conveyed to students at the elementary,
secondary, or even college level. Instead, most of us develop
phobias in school about math's elusive logic and then pass these
negative impressions on to our children. We should all be having
fun with math and helping our kids to do better in life by
encouraging them to appreciate not only its usefulness but
especially its charm. That's just what veteran math educator Alfred
Posamentier sets out to do in this delightful exploration of math's
many intriguing, interesting, and fun qualities.
Critique of research methods and methodology is one of several key features of the regular dialogue between researchers. This critique takes place formally at conferences and seminars, and regularly in universities. Published critique is normally separated from the original work. This book brings together the writing of researcher and independent critique. Thus the book exposes to wider scrutiny the dialogue that exists between researchers. It will be of interest to all who are concerned to understand the nature and substance of this critique. The volume comprises a collection of accounts of classroom studies, each complemented by the reaction of an eminent researcher. The accounts and reactions are written to expose the nature of methodology of classroom research. It argues that methodology encompasses the choice of methods and the researchers' beliefs and values.
|
![]() ![]() You may like...
Financial Mathematics - A Computational…
K. Pereira, N. Modhien, …
Paperback
R326
Discovery Miles 3 260
STEM Research for Students Volume 1…
Julia H Cothron, Ronald N Giese, …
Hardcover
R2,880
Discovery Miles 28 800
Routley-Meyer Ternary Relational…
Gemma Robles, Jose M. Mendez
Paperback
R1,670
Discovery Miles 16 700
STEM Research for Students Volume 2…
Julia H Cothron, Ronald N Giese, …
Hardcover
R2,894
Discovery Miles 28 940
STEM Research for Students Volume 1…
Julia H Cothron, Ronald N Giese, …
Hardcover
R2,880
Discovery Miles 28 800
|