![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering > General
The field of membrane separation technology is presently in a state of rapid growth and innovation. Many different membrane separation processes have been developed during the past half century and new processes are constantly emerging from academic, industrial, and governmental laboratories. While new membrane separation processes are being conceived with remarkable frequency, existing processes are also being constantly improved in order to enhance their economic competitiveness. Significant improvements are currently being made in many aspects of membrane separation technology: in the development of new membrane materials with higher selectivity and/or permeability, in the fabrication methods for high-flux asymmetric or composite membranes, in membrane module construction and in process design. Membrane separation technology is presently being used in an impressive variety of applications and has generated businesses totalling over one billion U.S. dollars annually. The main objective of this book is to present the principles and
applications of a variety of membrane separation processes from the
unique perspectives of investigators who have made important
contributions to their fields. Another objective is to provide the
reader with an authoritative resource on various aspects of this
rapidly growing technology. The text can be used by someone who
wishes to learn about a general area of application as well as by
the knowledgeable person seeking more detailed information.
Useful as a reference for engineers in industry and as an advanced
level text for graduate engineering students, Multiphase Flow and
Fluidization takes the reader beyond the theoretical to demonstrate
how multiphase flow equations can be used to provide applied,
practical, predictive solutions to industrial fluidization
problems. Written to help advance progress in the emerging science
of multiphase flow, this book begins with the development of the
conservation laws and moves on through kinetic theory, clarifying
many physical concepts (such as particulate viscosity and solids
pressure) and introducing the new dependent variable--the volume
fraction of the dispersed phase. Exercises at the end of each
chapterare provided for further study and lead into applications
not covered in the text itself.
This book presents new approaches to security risk analysis and scenario building on the basis of water works such as flood barriers and storm surge barriers. Defending flood barriers is not only important because of climate change and rising sea levels, but also due to the vulnerability of fresh water supplies and the increasing number of people living in vulnerable low-lying river and sea deltas.
Handbook of Flotation Reagents: Chemistry, Theory and Practice: Flotation of Gold, PGM and Oxide Minerals, Volume 2 focuses on the theory, practice, and chemistry of flotation of gold, platinum group minerals (PGMs), and the major oxide minerals, along with rare earths. It examines separation methods whose effectiveness is limited when using conventional treatment processes and considers commercial plant practices for most oxide minerals, such as pyrochlore-containing ores, copper cobalt ores, zinc ores, tin ores, and tantalum/niobium ores. It discusses the geology and mineralogy of gold, PGMs, and oxide minerals, as well as reagent and flotation practices in beneficiation. The book also looks at the factors affecting the floatability of gold minerals and describes PGM-dominated deposits such as Morensky-type deposits, hydrothermal deposits, and placer deposits. In addition, case studies of flotation and beneficiation in countries such as Canada, Africa, Russia, Chile, and Saudi Arabia are presented. This book will be useful to researchers, university students, and professors, as well as mineral processors faced with the problem of beneficiation of difficult-to-treat ores.
The continued greening of the energy sector, with inroads being made through numerous sources of materials that can produce energy, is the main focus of this, Green Chemical Processing, Volume 8. It includes contributions from area experts in widely different fields, all involved in energy production, and makes connections to the 12 Principles of Green Chemistry.
Extend the life span of tubular heat exchangers with this bounty of inspection checklists and cost-containment tips. Featuring coverage of the two inspection codes used worldwide, plus techniques of plugging, ferruling, and sleeving, this guide helps you clean exchangers ... make shell-side repairs and alterations ... maintain tubesheets, bonnets, channels, and covers ... handle tube leaks ... increase reboiler capacity and repair reboiler shells ... conduct feedwater heater autopsies to prevent repetition of past design and operation errors ... and much more.
This book addresses the developing area of biomass for technological applications. Written by leading researchers in the field, the book differs from other literature available by providing a detailed, in-depth discussion of the characteristics of these materials. The use of biomass for technological applications is a rapidly growing area in materials engineering and green bioprocesses. In this approach, pre-treatments focus on the bioavailability of nutrients and facilitate the use of biomass for delivering byproducts (e.g. enzymes) and for bioenergy production, both of which are discussed at length in this book. In this regard, it explores various aspects of the structural complexity of residual biomass produced by agricultural, industrial and livestock activities for biotechnological purposes, and assesses both conventional and emerging pre-treatments (e.g. biological, enzymatic and physical-chemical). This book reveals the advantages of these techniques, both individually and in combination, making it an excellent resource for all readers interested in cutting-edge applications of biomass.
The NIOSH Pocket Guide to Chemical Hazards presents information taken from the NIOSH/OSHA Occupational Health Guidelines for Chemical Hazards, from National Institute for Occupational Safety and Health (NIOSH) criteria documents and Current Intelligence Bulletins, and from recognized references in the fields of industrial hygiene, occupational medicine, toxicology, and analytical chemistry. The information is presented in tabular form to provide a quick, convenient source of information on general industrial hygiene practices. The information in the Pocket Guide includes chemical structures or formulas, identification codes, synonyms, exposure limits, chemical and physical properties, incompatibilities and reactivities, measurement methods, respirator selections, signs and symptoms of exposure, and procedures for emergency treatment.
Solid biofuels, in different trading forms, constitute an integral component of the energy mix of almost all developed and developing countries. Either in the form of pellets, briquettes, chips, firewood, or even as raw feedstock, solid biofuels are used mainly in the heating and power sector. Numerous sustainability concerns, focusing on the environmental, economic and technical aspects of solid biofuels exploitation, led to considerable advances in the recent years in this field. These developments mainly focus on the pre-treatment processes of the solid biomass to biofuels chain, the minimum requirements of the produced solid biofuels, as well as the efficiency and the environmental performance of their thermochemical conversion routes. This work aspires to provide the state of the art in the field of the exploitation of solid biofuels to present the main advances as well as the major challenges of this scientific fields. The topics presented in this book were examined and dealt with by the authors in the past few years, in numerous research projects and scientific publications. This book compiles all the assembled experience of the past few years, and aims to provide an overview of the solid biofuels exploitation field. Presents the latest standards and considerations on solid biofuels technical requirements; Contains numerous examples on applications in the field of solid biofuels thermochemical conversion, as well as the state of the art in this field; Includes sustainability aspects, including life cycle assessment aspects and financial concerns for the exploitation of solid biofuels.
The selection of the most adequate thermodynamic model in a process simulation is an issue that most process engineers have to face sooner or later. This book, conceived as a practical guide, aims at providing adequate answers by analyzing the questions to be answered. The analysis (first chapter) yields three keys that are further discussed in three different chapters. The fourth chapter illustrates the phase behavior and makes model recommendations for the most significant industrial systems. A decision tree is provided at the end of this chapter. In the last chapter, the key questions are reviewed for a number of typical processes. This book is intended for process engineers who are not specialists in thermodynamics, but are confronted with this kind of problems and need a reference book, as well as process engineering students who will find an original approach to thermodynamics, complementary to traditional lectures.
There is hardly any technical library in the world in which the volumes of the Chemical Formulary (Volumes 1-34) do not occupy a prominent place. Chemists both experienced and beginner, continually refer to them. It does not duplicate any of the formulas included in previous volumes, but lists a wide array of modern and salable products from all branches of the chemical industries. An excellent reference for formulation problems. -CONTENTS - I. Introduction - II. Adhesives - III. Beverages and Foods - IV. Cosmetics - V. Coatings - VI. Detergents and Disinfectants - VII. Drug Products - VIII. Elastomers, Plastics, and Resins - IX. Metals - X. Polishes - XI. Textile Specialties - XII. Miscellaneous - Appendix - Index - PREFACE - Chemistry, as taught in our schools and colleges, concerns chiefly synthesis, analysis, and engineering-and properly so. It is part of the right foundation for the education of the chemist. Many a chemist entering an Industry soon finds that most of the products manufactured by his concern are not synthetic or definite complex compounds, but are mixtures, blends, or highly complex compounds of which he knows little or nothing. The literature in this field, if any, may be meager, scattered, or obsolete. Even chemists with years of experience In one or more Industries spend considerable time and effort in acquainting themselves with any new field which they may enter. Consulting chemists similarly have to solve problems brought to them from industries foreign to them. There was a definite need for an up-to-date compilation of formulae for chemical compounding and treatment. Since the fields to be covered are many and varied, an editorial board of chemists and engineers engaged in many industries was formed. Many publications, laboratories, manufacturing firms, and Individuals have been consulted to obtain the latest and best information. It is felt that the formulas given in this volume will save chemists and allied workers much time and effort. Manufacturers and sellers of chemicals will find, In these formulae, new uses for their products. Non-chemical executives, professional men, and Interested laymen will make through this volume a "speaking acquaintance" with products which they may be using, trying or selling. It often happens that two Individuals using the same Ingredients in the same formula get different results. This may be due to slight deviations in the raw materials or unfamiliarity with the intricacies of a new technique. Accordingly, repeated experiments may be necessary to get the best results. Although many of the formulas given are being used commercially, many have been taken from the literature and may be subject to various errors and omissions. This should be taken into consideration. Wherever possible, it is advisable to consult with other chemists or technical workers regarding commercial production.
As a result of knowledge exchange between the academic and industrial worlds, this book analyzes the process industries impacted by the digital revolution that accompanies the ongoing energy and environmental transitions. Process Industries 2 first discusses bio-industries and analyzes the development of products of microbial origin. It then studies all the stages of industrialization that facilitate the progress from research to the production of a finished product, as well as industrial management techniques. Using concrete examples, this book presents the instruments of the digital revolution (artificial intelligence, virtual reality, augmented reality, the Internet of Things, digital twins), while analyzing their impact on the supply chain and operators. Boxes within the book, written by recognized specialists, invite both students and professionals, who are faced with a changing world, to reflect on the industry and the world of tomorrow.
|
You may like...
The Biodiesel Handbook, Second Edition
Gerhard Knothe, Jon Van Gerpen
Paperback
R3,085
Discovery Miles 30 850
Current Developments in Biotechnology…
Ranjna Sirohi, Ashok Pandey, …
Paperback
R4,540
Discovery Miles 45 400
Current Developments in Biotechnology…
Xuan-Thanh Bui, Dinh Duc Nguyen, …
Paperback
R4,602
Discovery Miles 46 020
New and Future Developments in Microbial…
Harikesh Bahadur Singh, Anukool Vaishnav
Paperback
R4,540
Discovery Miles 45 400
Current Developments in Biotechnology…
Sridhar Pilli, Puspendu Bhunia, …
Paperback
R4,540
Discovery Miles 45 400
New and Future Developments in Microbial…
Harikesh Bahadur Singh, Anukool Vaishnav
Paperback
R4,582
Discovery Miles 45 820
Chemical Engineering: Solutions to the…
J.R. Backhurst, J.H. Harker, …
Paperback
R1,352
Discovery Miles 13 520
|