![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering > General
Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.
For several decades developments in porous media have taken place in almost independent areas. In civilengineering, many papers were publisheddealing with the foundations offlow and transport through porous media. The method used in most cases is called averaging, and the notion ofa representative elementary vol- ume(REV)playsanimportantrole. Inchemicalengineering,papersonconceptual models were written on the theory ofmixtures. Intheoretical physics and stochas- tic analysis, percolation theory has emerged, providing probabilistic models for systems where theconnectedness propertiesofsomecomponentdominatethebe- havior. In mathematics, atheoryhasbeendevelopedcalled homogenizationwhich deals with partial differential equations having rapidly oscillating coefficients. Early work in these and related areas was - among others - done by the fol- lowing scientists: Maxwell [Max81] and Rayleigh [Ray92] studied the effective conductivity of media with small concentrations of randomly and periodically, respectively, arranged inclusions. Einstein [Ein06] investigated the effective vis- cosityofsuspensions with hard spherical particles in compressible viscous fluids. Marchenko and Khrouslov [MK64] looked at the asymptotic nature of homog- enization; they introduced a general approach of averaging based on asymptotic tools which can handle a variety ofdifferent physical problems. Unfortunately, up to now, little efforthas been made to bridge the gap between these different fields of research. Consequently, many results were and are dis- covered independently, and scientists are almost unable to understand each other because the respective languages have been developing in different directions.
The study of dielectric properties of biological systems and their components is important not only for fundamental scientific knowledge but also for its applications in medicine, biology, and biotechnology. The associated technique - known as dielectric spectroscopy - has enabled researchers to quickly and accurately acquire time- or frequency-spectra of permittivity and conductivity and permitted the derivation and testing of realistic electrical models for cells and organelles. This text covers the theoretical basis and practical aspects of the study of dielectric properties of biological systems, such as water, electrolyte and polyelectrolytes, solutions of biological macromolecules, cells suspensions and cellular systems. The authors' combined efforts provide a comprehensive and cohesive book that takes advantage of the expertise of multiple scientists involved in cutting-edge research in the specific sub-fields of bio-dielectric spectroscopy while maintaining its self-consistency through numerous discussions. The first six chapters cover theoretical, methodological and experimental aspects of relaxation and dispersion in biological dielectrics at molecular, cellular and cellular aggregate level. Applications are presented in the following chapters which are organized in the order of increased complexity, beginning with pure water, amino acids and proteins, continuing with vesicles and simple cells such as erythrocytes, and then with more complex, organelle-containing cells and cellular aggregates. Due to its broad coverage, the text could be used as a reference book by researchers, and as a textbook for upper-level undergraduate classes and graduate classes in (bio) physics, medical physics, quantitative biology, and engineering.
Metals in Wastes is an excellent guide for scientists, students, engineers, chemists, and industrial chemists who are looking for knowledge of the main sources of metals in industrial wastes. Metals are valuable materials that can be recycled again and again without degrading their properties. The recycling of metals enables us to preserve natural resources while requiring less energy to process than the manufacture of new products using virgin raw materials. A team of experts reviews the state-of-the-art and provides the readers not only with a comprehensive in-depth overview of the main composition of wastes but also discloses innovative methods which have been applied for recovery of critical and valuable metals in petrochemical industry, rubber, energy and automotive industries. This know-how could be considered as a useful reference tool for moving towards the zero-waste economy. Additionally, the book describes the economic aspects of metals recovery from various sources. This is essential for those already involved in the metals business and also for the financial, investment and advisory community internationally.
The ability to predict the behavior of fermentation systems
enhances the possibility of optimizing their performance.
Mathematical equations of model systems represent a tool for this
and the most recent advances in computer hardware and software have
made the approach more effective than previous simplistic attempts.
The current knowledge of biochemical microbial pathways and the
experience in optimization of chemical reactors combined with
extremely powerful and accessible computers, loaded with easy to
use software and mathematical routines, are changing the way
processes are being developed and operated.
This Volume presents key microscopy and imaging methods for revealing the structure and ultrastructure of environmental and experimental samples, of microbial communities and cultures, and of individual cells. Method adaptations that specifically address problems concerning the hydrophobic components of samples are highlighted and discussed. The methods described range from electron microscopy and light and fluorescence microscopy, to confocal laser-scanning microscopy, and include experimental set-ups for the analysis of interfacial processes like microbial growth and activities at hydrocarbon:water interfaces, biofilms and microbe:mineral interfaces. Three forms of fluorescence in situ hybridization - CARD-FISH, MAR-FISH and Two-pass TSA-FISH - are described for the ecophysiological analysis of functionally active microbes in samples. The methods presented will enable readers to obtain an ultrastructural picture of, and identify the key functional microbes in, samples under investigation. This in turn will constitute a key framework for the interpretation of information from other experimental approaches, such as physicochemical analyses and genomic investigations. Hydrocarbon and Lipid Microbiology ProtocolsThere are tens of thousands of structurally different hydrocarbons, hydrocarbon derivatives and lipids, and a wide array of these molecules are required for cells to function. The global hydrocarbon cycle, which is largely driven by microorganisms, has a major impact on our environment and climate. Microbes are responsible for cleaning up the environmental pollution caused by the exploitation of hydrocarbon reservoirs and will also be pivotal in reducing our reliance on fossil fuels by providing biofuels, plastics and industrial chemicals. Gaining an understanding of the relevant functions of the wide range of microbes that produce, consume and modify hydrocarbons and related compounds will be key to responding to these challenges. This comprehensive collection of current and emerging protocols will facilitate acquisition of this understanding and exploitation of useful activities of such microbes.
CONTENTS -
High Performance Liquid Chromatography Edited by Phyllis Brown and Richard Hartwick This contributed volume is designed to consolidate the basic theories of chromatography along with the more exciting developments in the field. This monograph addresses some questions that concern researchers in separation science, including: what is the current state of the art in liquid chromatography; has the development of liquid chromatography plateaued; if so, what new methods will take its place or complement it; and if not, where will the new frontiers be and what direction will liquid chromatography take? 1989 (0 471-84506-X) 688 pp. Quantitative Structure-Chromatographic Retention Relationships R. Kaliszan Written by a pioneer in the field, this book extends and updates research on quantitative structure retention relationships by consolidating and critically reviewing the extensive literature on the subject, while also providing the basic theoretical and practical information required in all investigations involving chromatography, analytical chemistry, biochemistry, and pharmaceutical research. Among the topics covered are the nature of chromatographic interactions, molecular interpretation of distribution processes in chromatography, topological indices as retention descriptors, and multiparameter structure-chromatographic retention relationships. 1987 (0 471-85983-4) 303 pp. Detectors for Liquid Chromatography Edited by Edward S. Yeung With its singular coverage of this fast-growing field, Detectors for Liquid Chromatography presents the state of the art in this subject area. It offers a comprehensive examination of the basic principles behind the detector response, instrumentation, and selected applications for comparison and evaluation of potential. Specifically, topics given in-depth coverage include polarimetric, indirect absorbance, refractive index detectors, absorption detectors for HPLC, FTIR and fluorometric detection, detection based on electrical and electromechanical measurements, and mass spectroscopy as an on-line detector for HPLC. 1986 (0 471-82169-1) 366 pp.
The book emphasizes various aspects of processing secondary sources for recovery of uranium. The field of secondary resource processing is gaining ground over the last few years as it is eco-friendly, economical and in tune with the philosophy of sustainable development. The book is the first one of its type in the area and includes a succint and comprehensive description of related areas of ore mineralogy, resource classification, processing principles involved in uranium solubilisation followed by separation and safety aspects. The clear organisation and the carefully selected figures and tables makes the treatment invaluable for practising engineers, research workers and academic institutions.
There is hardly a technical library in the world in which the volumes of the Chemical Formulary (Volumes 1-34) do not occupy a prominent place. It does not duplicate any of the formulas included in previous volumes, but lists a wide array of modern and salable products from all branches of the chemical industries. An excellent reference for formulation problems. - CONTENTS - I. Introduction - II. Adhesives - III. Beverages and Food - IV. Cosmetics - V. Coatings - VI. Detergents and Disinfectants - VII. Drugs - VIII. Polishes, Abrasives - IX. Miscellaneous - Appendix - Trademark Chemicals - Trademark Chemicals Suppliers - Index - PREFACE - Chemistry, as taught in our schools and colleges, concerns chiefly synthesis, analysis, and engineering-and properly so. It is part of the right foundation for the education of the chemist. Many a chemist entering an Industry soon finds that most of the products manufactured by his concern are not synthetic or definite complex compounds, but are mixtures, blends, or highly complex compounds of which he knows little or nothing. The literature in this field, if any, may be meager, scattered, or obsolete. Even chemists with years of experience In one or more Industries spend conslderable time and effort in acquainting themselves with any new field which they may enter. Consulting chemists similarly have to solve problems brought to them from industries foreign to them. There was a definite need for an up-to-date compilation of formulae for chemical compounding and treatment. Since the fields to be covered are many and varied, an editorial board of chemists and engineers engaged in many industries was formed. Many publications, laboratories, manufacturing firms, and Individuals have been consulted to obtain the latest and best information. It is felt that the formulas given in this volume will save chemists and allied workers much time and effort.
CONTENTS - IN FAVOUR OF COSMETICS - THE SKIN - 1. THE SKIN - 2. ALLERGY AND DERMATITIS - 3. DIET AND SKIN HEALTH - 4. SKIN PENETRATION AND SKIN NUTRITION - THE CARE OF THE FACE - 5. COLD AND CLEANSING CREAMS, CLEANSING MILKS AND LOTIONS - 6. ACID CREAMS, MILKS AND LOTIONS - 7. ASTRINGENT ("PORE") LOTIONS AND SKIN "TONICS" - 8. FACE PACKS AND MASKS - 9. VANISHING, POWDER AND ALL-PURPOSE CREAMS; FOUNDATION CREAMS AND FOUNDATION MAKE-UP PREPARATIONS - 10. SKIN FOODS, LUBRICATING AND SKIN CONDITIONING CREAMS - 11. FACE POWDERS, COMPACT POWDERS AND CAKE MAKE-UP - 12. MAKE-UP PREPARATIONS - 13. SUNBURN AND SUN-TAN PREPARATIONS - 14. ACNE PREPARATIONS - 15. THE APPLICATION OF COSMETICS - THE CARE OF THE MOUTH - 16. THE TOOTH AND PATHOLOGICAL DENTAL CONDITIONS - 17. TOOTH PASTES AND TOOTH POWDERS, DENTURE CLEANSERS - 18. MOUTHWASHES - THE CARE OF THE EYES - 19. EYE LOTIONS - THE CARE OF THE HAIR - 20. THE HAIR - 21. HAIR TONICS AND LOTIONS - 22. HAIR SHAMPOOS, RINSES AND CONDITIONERS - 23* PERMANENT WAVING - 24* HAIR-SETTING LOTIONS AND LACQUERS - 25* HAIR BRILLIANTINES, CREAMS AND FIXATIVES - 26. HAIR DYES - THE CARE OF THE BODY - 27. THE PROCESSING OF TOILET SOAP - 28. BATH PREPARATIONS - 29* SHAVING PREPARATIONS - 30. ANTIPERSPIRANTS AND DEODORANTS - 31. DEPILATORIES - 32. COSMETIC STOCKINGS - 33. FOOT PREPARATIONS - 34. INSECT REPELLENT AND INSECT BITE PREPARATIONS - 35. BABY PREPARATIONS - THE CARE OF THE HANDS - 36. THE NAILS - 37* MANICURE PREPARATIONS - 38. HAND CREAMS AND LOTIONS - 39* PROTECTIVE CREAMS AND HAND CLEANSERS - COSMETIC FACTS AND FALLACIES - 40. COSMETIC FACTS AND FALLACIES - GENERAL ASPECTS OF COSMETIC FORMULATION - 41. EMULSIONS AND TRANSPARENT DISPERSIONS - 42. ANTISEPTICS AND PRESERVATIVES - 43. ANTIOXIDANTS - 44. HUMECTANTS - 45. "MODUS OPERANDI " - APPENDICES - INDEX -
This book is the second of two volumes that deal with discovery of chemical pathways of biosynthesis of natural products (secondary metabolites). The first volume covered the use of isotopes in biosynthetic research and the formation of enzyme cofactors and reduced polyketides. This second volume describes biosynthesis of aromatic (unreduced) polyketides, enzymes responsible for cyclization of terpenoids (isoprenoids), and biochemical generation of selected classes of alkaloids (prenylated tryptophan, tropane, pyrrolizidine). Knowledge of the pathways and the techniques to elucidate them opens the door to combinatorial biosynthesis as well as to the production of targeted pharmaceutical agents utilizing a combination of chemistry, molecular biology and protein biochemistry.
There is hardly a technical library in the world in which the volumes of the Chemical Formulary (Volumes 1-34) do not occupy a prominent place. It does not duplicate any of the formulas included in previous volumes, but lists a wide array of modern and salable products from all branches of the chemical industries. An excellent reference for formulation problems. - CONTENTS - I. Introduction - II. Adhesives - III. Beverages and Foods - IV. Cosmetics - V. Coatings - VI. Detergents - VII. Drugs - VIII. Polishes - IX. Miscellaneous - Appendix - Trademark Chemicals - Trademark Chemicals Suppliers - Index - PREFACE - Chemistry, as taught in our schools and colleges, concerns chiefly synthesis, analysis, and engineering-and properly so. It is part of the right foundation for the education of the chemist. Many a chemist entering an Industry soon finds that most of the products manufactured by his concern are not synthetic or definite complex compounds, but are mixtures, blends, or highly complex compounds of which he knows little or nothing. The literature in this field, if any, may be meager, scattered, or obsolete. Even chemists with years of experience In one or more Industries spend conslderable time and effort in acquainting themselves with any new field which they may enter. Consulting chemists similarly have to solve problems brought to them from industries foreign to them. There was a definite need for an up-to-date compilation of formulae for chemical compounding and treatment. Since the fields to be covered are many and varied, an editorial board of chemists and engineers engaged in many industries was formed. Many publications, laboratories, manufacturing firms, and Individuals have been consulted to obtain the latest and best information. It is felt that the formulas given in this volume will save chemists and allied workers much time and effort.
The immobilized biocatalyst (IMB) is a key component of biotransformation systems that are used to transform substrates to desired products. The impro- ment of biocatalyst properties has a direct influence on the overall effectiveness of the process based on the biotransformation. The basic catalytic characte- stics of biocatalyst that are followed include kinetic properties, pH optima, stability,and inhibition. The investigation of catalytic properties of immobilized enzymes is still a time consuming procedure and is not always simple. In the 1980s,a major effort was made to standardize the rules by which IMB is char- terized. The Working Party of EFB on immobilized biocatalysts has formul- ed principles of individual methods, among them the requirement of kinetic characterization [1]. It was recommended to use a packed-bed reactor,equipped with temperature control and with infinite flow circulation. The system should be equipped with a post-column unit to measure the time-dependence of the product or substrate concentration [2, 3], the most commonly used analytical methods being spectrophotometry, chemiluminiscence, automatic titration, bioluminiscence, chromatography, polarimetry, and biosensors based on the oxygen electrode. There are two main drawbacks to the application of these methods: 1. The need to vary the analytical principles, depending on the chemical and physical-chemical properties of analytes; 2. In some cases, mainly in the study of hydrolytic enzymes, the natural s- strate must be replaced by an artificial one,that is chromolytic,chromogenic, chemiluminiscent,bioluminiscent,or fluorescent.
This Volume presents relevant single-cell and single-molecule approaches in the study of microbes producing and utilizing hydrocarbons and lipids. While generically applicable for all microorganisms, the approaches described are, wherever possible, adapted to the field of study of hydrocarbon and lipid microbiology. The methods include basic procedures for isolating single cells by means of microfluidics and flow cytometry, and their cultivation in arrays as pure clones; for isolating, amplifying and sequencing single-cell genomes and transcriptomes; and for analysing single-cell metabolomes by means of Raman spectroscopy. Single-molecule approaches include the use of protein:fluorescent dye fusions for protein localization and methods for the production of cell division protostructures and lipid monolayers. Methods for the functional analysis of single cells include detection of metabolically active (protein-synthesizing) cells in environmental samples by bioorthogonal non-canonical amino acid tagging, Raman spectroscopy combined with stable isotope labelling and fluorescent in situ hybridisation, and visualization of single cells participating in gene transfer activity. Lastly, protocols are presented for single-cell biotechnological applications, including biofuel production. Hydrocarbon and Lipid Microbiology ProtocolsThere are tens of thousands of structurally different hydrocarbons, hydrocarbon derivatives and lipids, and a wide array of these molecules are required for cells to function. The global hydrocarbon cycle, which is largely driven by microorganisms, has a major impact on our environment and climate. Microbes are responsible for cleaning up the environmental pollution caused by the exploitation of hydrocarbon reservoirs and will also be pivotal in reducing our reliance on fossil fuels by providing biofuels, plastics and industrial chemicals. Gaining an understanding of the relevant functions of the wide range of microbes that produce, consume and modify hydrocarbons and related compounds will be key to responding to these challenges. This comprehensive collection of current and emerging protocols will facilitate acquisition of this understanding and exploitation of useful activities of such microbes.
Biopolymers from Renewable Resources is a compilation of information on the diverse and useful polymers derived from agricultural, animal, and microbial sources. The volume provides insight into the diversity of polymers obtained directly from, or derived from, renewable resources. The beneficial aspects of utilizing polymers from renewable resources, when considering synthesis, pro cessing, disposal, biodegradability, and overall material life-cycle issues, suggests that this will continue to be an important and growing area of interest. The individual chapters provide information on synthesis, processing and properties for a variety of polyamides, polysaccharides, polyesters and polyphenols. The reader will have a single volume that provides a resource from which to gain initial insights into this diverse field and from which key references and contacts can be drawn. Aspects of biology, biotechnology, polymer synthesis, polymer processing and engineering, mechanical properties and biophysics are addressed to varying degrees for the specific biopolymers. The volume can be used as a reference book or as a teaching text. At the more practical level, the range of important materials derived from renewable resources is both extensive and impressive. Gels, additives, fibers, coatings and films are generated from a variety of the biopolymers reviewed in this volume. These polymers are used in commodity materials in our everyday lives, as well as in specialty products."
The Springer Handbook of Enzymes provides concise data on some 5,000 enzymes sufficiently well characterized - and here is the second, updated edition. Their application in analytical, synthetic and biotechnology processes as well as in food industry, and for medicinal treatments is added. Data sheets are arranged in their EC-Number sequence. The new edition reflects considerable progress in enzymology: the total material has more than doubled, and the complete 2nd edition consists of 39 volumes plus Synonym Index. Starting in 2009, all newly classified enzymes are treated in Supplement Volumes.
Plant secondary metabolism is an economically important source of fine chemicals, such as drugs, insecticides, dyes, flavours, and fragrances. Moreover, important traits of plants such as taste, flavour, smell, colour, or resistance against pests and diseases are also related to secondary metabolites. The genetic modification of plants is feasible nowadays. What does the possibility of engineering plant secondary metabolite pathways mean? In this book, firstly a general introduction is given on plant secondary metabolism, followed by an overview of the possible approaches that could be used to alter secondary metabolite pathways. In a series of chapters from various authorities in the field, an overview is given of the state of the art for important groups of secondary metabolites. No books have been published on this topic so far. This book will thus be a unique source of information for all those involved with plants as chemical factories of fine chemicals and those involved with the quality of food and ornamental plants. It will be useful in teaching graduate courses in the field of metabolic engineering in plants. |
You may like...
Data Science and Big Data: An…
Witold Pedrycz, Shyi-Ming Chen
Hardcover
R4,705
Discovery Miles 47 050
Hardware Accelerators in Data Centers
Christoforos Kachris, Babak Falsafi, …
Hardcover
R3,812
Discovery Miles 38 120
Resource Recovery in Drinking Water…
Mika Sillanpaa, Ali Khadir, …
Paperback
R4,448
Discovery Miles 44 480
Eight Days In July - Inside The Zuma…
Qaanitah Hunter, Kaveel Singh, …
Paperback
(1)
Principles and Applications of Density…
Nik Kaltsoyanis, John E. McGrady
Hardcover
R5,251
Discovery Miles 52 510
|