![]() |
![]() |
Your cart is empty |
||
Books > Medicine > General issues > Medical equipment & techniques > General
Despite blockchain being an emerging technology that is mainly applied in the financial and logistics domain areas, it has great potential to be applied in other industries to generate a wider impact. Due to the need for social distancing globally, blockchain has great opportunities to be adopted in digital health including health insurance, pharmaceutical supply chain, remote diagnosis, and more. Revolutionizing Digital Healthcare Through Blockchain Technology Applications explores the current applications and future opportunities of blockchain technology in digital health and provides a reference for the development of blockchain in digital health for the future. Covering key topics such as privacy, blockchain economy, and cryptocurrency, this reference work is ideal for computer scientists, healthcare professionals, policymakers, researchers, scholars, academicians, practitioners, instructors, and students.
Developments in the areas of biology and bioinformatics are continuously evolving and creating a plethora of data that needs to be analyzed and decrypted. Since it can be difficult to decipher the multitudes of data within these areas, new computational techniques and tools are being employed to assist researchers in their findings. The Handbook of Research on Computational Intelligence Applications in Bioinformatics examines emergent research in handling real-world problems through the application of various computation technologies and techniques. Featuring theoretical concepts and best practices in the areas of computational intelligence, artificial intelligence, big data, and bio-inspired computing, this publication is a critical reference source for graduate students, professionals, academics, and researchers.
Bioinformatics as a discipline has come of age, and there are now numerous databases and tools that are widely used by researchers in the biomedical field. However, successful development of future bioinformatics applications will depend on an appropriately formalised representation of domain knowledge. This book provides a timely and first-of-its-kind collection of contributed chapters on anatomy ontologies. It is interdisciplinary in its approach, bringing together relevant expertise from computing and biomedical studies, and covering both theoretical and applied aspects, with an emphasis on newer work relevant to the emerging Semantic Web. Topics and Features: a [ Provides a comprehensive discussion of the foundations of anatomical ontologies and the state of the art in existing computational tools and applications a [ Considers a number of fundamental modelling principles a [ Includes chapters about research on algorithms to systematically align anatomy ontologies and to mine data in the literature, using anatomy terms a [ Explains recent efforts to develop a common anatomy reference ontology a [ Discusses anatomy in the context of spatio-temporal biomedical atlases a [ Describes systems and tools for linking anatomy ontologies with each other and with other on-line resources, such as the biomedical literature a [ Highlights the challenges of dealing with anatomy-based information on the Semantic Web Although primarily written for readers who will be involved in developing the next generation of IT applications in the areas of life sciences, biomedical sciences and health care, this unique volume will be of interest to anyone who will furtherdevelop anatomy ontologies, who will use them, and who will be involved in the actual development of relevant (semantic) web applications.
A collection of both well-established and cutting-edge methods for investigating breast cancer biology not only in the laboratory, but also in clinical settings. These readily reproducible techniques solve a variety of problems, ranging from how to collect, store, and prepare human breast tumor samples for analysis, to analyzing cells in vivo and in vitro. Additional chapters address the technology of handling biopsies, new methods for analyzing genes and gene expression, markers of clinical outcome and progress, analysis of tumor-derived proteins and antigens, validating targets, and investigating the biology of newly discovered genes.
Recent advances in drug discovery have been rapid. The second edition of Bioinformatics and Drug Discovery has been completely updated to include topics that range from new technologies in target identification, genomic analysis, cheminformatics, protein analysis, and network or pathway analysis. Each chapter provides an extended introduction that describes the theory and application of the technology. In the second part of each chapter, detailed procedures related to the use of these technologies and software have been incorporated. Written in the highly successful Methods in Molecular Biology (TM) series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results in the laboratory. Thorough and intuitive, Bioinformatics and Drug Discovery, Second Edition seeks to aid scientists in the further study of the rapidly expanding field of drug discovery.
This book is open access under a CC BY-NC 2.5 license. This book presents the VISCERAL project benchmarks for analysis and retrieval of 3D medical images (CT and MRI) on a large scale, which used an innovative cloud-based evaluation approach where the image data were stored centrally on a cloud infrastructure and participants placed their programs in virtual machines on the cloud. The book presents the points of view of both the organizers of the VISCERAL benchmarks and the participants. The book is divided into five parts. Part I presents the cloud-based benchmarking and Evaluation-as-a-Service paradigm that the VISCERAL benchmarks used. Part II focuses on the datasets of medical images annotated with ground truth created in VISCERAL that continue to be available for research. It also covers the practical aspects of obtaining permission to use medical data and manually annotating 3D medical images efficiently and effectively. The VISCERAL benchmarks are described in Part III, including a presentation and analysis of metrics used in evaluation of medical image analysis and search. Lastly, Parts IV and V present reports by some of the participants in the VISCERAL benchmarks, with Part IV devoted to the anatomy benchmarks and Part V to the retrieval benchmark. This book has two main audiences: the datasets as well as the segmentation and retrieval results are of most interest to medical imaging researchers, while eScience and computational science experts benefit from the insights into using the Evaluation-as-a-Service paradigm for evaluation and benchmarking on huge amounts of data.
Evaluation Methods in Medical Informatics, Second Edition is a heavily updated and revised volume based on editors Friedman and Wyatt's successful first edition. This book incorporates the solid foundation of evaluation theories, methods, and techniques laid out in the first edition, and builds on it to include case studies from real world situations. Designed as a guide for both the informatics novice and the seasoned professional seeking a comprehensive resource, this book explores information systems evaluation from the ground up. Critique and disscussion of actual evaluation efforts will guide the reader through real world application of the techniques described. Just like its first edition, this volume is an unparalled reference for a broad range of health information professionals. From those in training for careers in informatics to on-site medical information systems staff, Evaluation Methods in Medical Informatics, Second Edition is an invaluable guide to successful evaluation of information technology in health care.
In excess of 7 million people worldwide die of coronary heart disease each year. Only one-third of these heart attack victims recover completely. The remainder suffer the consequences of myocardial infarction and its ill fated remodeling process, resulting in chronic congestive heart failure. This malady alone is the leading cause of hospital admissions in the United States. New breakthroughs in stem cell therapy and tissue engineering have promised to reverse this dismal outcome by cardiovascular repair. World authorities, including scientists and regulatory authorities, have joined in a collaborative effort to present for the reader the first collective review of stem cell therapy for the treatment of cardiovascular disease. These contributions in basic science, pre-clinical and clinical experience guided by the regulatory pathways, assure a rapid course of translational research and clinical trials. The contents of this publication will become a prerequisite for those preparing to meet the challenges of this exciting and potentially rewarding field of stem cell research.
This teaching monograph on systems approaches to cancer research and clinical applications provides a unique synthesis, by world-class scientists and doctors, of laboratory, computational, and clinical methods, thereby establishing the foundations for major advances not possible with current methods. Specifically, the book: 1) Sets the stage by describing the basis of systems biology and bioinformatics approaches, and the clinical background of cancer in a systems context; 2) Summarizes the laboratory, clinical, data systems analysis and bioinformatics tools, along with infrastructure and resources required; 3) Demonstrates the application of these tools to cancer research; 4) Extends these tools and methods to clinical diagnosis, drug development and treatment applications; and 5) Finishes by exploring longer term perspectives and providing conclusions. This book reviews the state-of-the-art, and goes beyond into new applications. It is written and highly referenced as a textbook and practical guide aimed at students, academics, doctors, clinicians, industrialists and managers in cancer research and therapeutic applications. Ideally, it will set the stage for integration of available knowledge to optimize communication between basic and clinical researchers involved in the ultimate fight against cancer, whatever the field of specific interest, whatever the area of activity within translational research.
The coupling of biological and electronic systems has in the past few years emerged as a field of increasing importance. Achievements like the cardiac pacemaker have paved the way for more sophisticated approaches, such as the lab-on-a-chip and DNA computers. This book presents reviews on some of the most promising projects in this interdisciplinary research field, covering topics from bioinformatics to biosensor technology.
Information Communication Technologies (ICT) have become an increasingly prevalent part of everyday life. Today, there are many cases in which ICT assist the elderly and people with disabilities to complete tasks once thought impossible. Enhancing the Human Experience through Assistive Technologies and E-Accessibility discusses trends in ICT in relation to assistive technologies and their impact on everyday tasks for those with disabilities. This reference work provides different perspectives on upcoming technologies and their impact on e-accessibility and e-inclusion, essential topics for researchers, businesses, and ICT product developers in the field of assistive technologies.
Health Information Exchange: Navigating and Managing a Network of Health Information Systems, Second Edition, now fully updated, is a practical guide on how to understand, manage and make use of a health information exchange infrastructure, which moves patient-centered information within the health care system. The book informs and guides the development of new infrastructures as well as the management of existing and expanding infrastructures across the globe. Sections explore the reasons for the health information exchange (HIE) infrastructures, how to manage them, examines the key drivers of HIE, and barriers to their widespread use. In addition, the book explains the underlying technologies and methods for conducting HIE across communities as well as nations. Finally, the book explains the principles of governing an organization that chiefly moves protected health information around. The text unravels the complexities of HIE and provides guidance for those who need to access HIE data and support operations.
Applications of Artificial Intelligence in Medical Imaging provides the description of various biomedical image analysis in disease detection using AI that can be used to incorporate knowledge obtained from different medical imaging devices such as CT, X-ray, PET and ultrasound. The book discusses the use of AI for detection of several cancer types, including brain tumor, breast, pancreatic, rectal, lung colon, and skin. In addition, it explains how AI and deep learning techniques can be used to diagnose Alzheimer's, Parkinson's, COVID-19 and mental conditions. This is a valuable resource for clinicians, researchers and healthcare professionals who are interested in learning more about AI and its impact in medical/biomedical image analysis.
This book covers emerging trends in signal processing research and biomedical engineering, exploring the ways in which signal processing plays a vital role in applications ranging from medical electronics to data mining of electronic medical records. Topics covered include statistical modeling of electroencephalograph data for predicting or detecting seizure, stroke, or Parkinson's; machine learning methods and their application to biomedical problems, which is often poorly understood, even within the scientific community; signal analysis; medical imaging; and machine learning, data mining, and classification. The book features tutorials and examples of successful applications that will appeal to a wide range of professionals and researchers interested in applications of signal processing, medicine, and biology.
With sixty years of combined experience, the authors of this extensively revised book have learned to emphasize the fundamental materials science, structure-property relationships, and biological responses as a foundation for a wide array of biomaterials applications. This edition includes a new chapter on tissue engineering and regenerative medicine, approximately 1900 references to additional reading, extensive tutorial materials on new developments in spinal implants and fixation techniques and theory. It also offers systematic coverage of orthopedic implants, and expanded treatment of ceramic materials and implants.
This book introduces a new cyberphysical system that combines clinical and basic neuroscience research with advanced data analysis and medical management tools for developing novel applications for the management of epilepsy. The authors describe the algorithms and architectures needed to provide ambulatory, diagnostic and long-term monitoring services, through multi parametric data collection. Readers will see how to achieve in-hospital quality standards, addressing conventional "routine" clinic-based service purposes, at reduced cost, enhanced capability and increased geographical availability. The cyberphysical system described in this book is flexible, can be optimized for each patient and is demonstrated in several case studies.
This book is a comprehensive, interdisciplinary resource for the latest information on implantable medical devices, and is intended for graduate students studying electrical engineering, electronic instrumentation, and biomedical engineering. It is also appropriate for academic researchers, professional engineers, practicing doctors, and paramedical staff. Divided into two sections on Basic Concepts and Principles, and Applications, the first section provides an all-embracing perspective of the electronics background necessary for this work. The second section deals with pacing techniques used for the heart, brain, spinal cord, and the network of nerves that interlink the brain and spinal cord with the major organs, including ear and eye prostheses. The four main offshoots of implantable electronics, which this book discusses, are: The insertion of an implantable neural amplifier for accurate recording of neural signals for neuroengineering studies The use of implantable pulse generators for pacing the activities of diseased organs The use of implantable sensors for observing the influence of therapy and monitoring a patient's biological parameters The use of drug delivery systems to supervise the supply of accurate doses of medicine to affected parts Readers will also find chapters on the essentials of clocking and timing circuits, pulse generator circuits, neural amplifiers, batteries, biomaterials and biocompatibility, and more. Unique to this book is also a chapter on cyber security and confidentiality concerns with implants. End-of-chapter questions and exercises help readers apply the content to practical use, making this an ideal book for anyone wishing to learn more about implantable devices.
From bandage to the bioreactor, this book looks at five different device technologies from inception to healthcare practice, drawing on medical sociology, science and technology studies and political science. It examines "evidence," regulation and governance processes, and diverse stakeholders in innovating the technologies that shape health care.
This book highlights the responsibility of medical device designers and engineers to eliminate sites of failure and to test devices to demonstrate their ultimate safety and efficacy. It also evaluates biomaterials and their properties as related to the design and reliability of medical devices. The principles that are described are readily applicable to the biomaterial scaffolds used for generating tissue-engineered constructs.
The promise and prospects for mobile technologies in healthcare service delivery-particularly as experienced by patients and other users-are the focus of this forward-looking volume. Its detailed sociotechnical perspective takes in factors influencing patient and provider adoption of technological advances, in addition to the well-known cost and accessibility advantages. Enlightening reports show mobile health technologies in multiple contexts as an impetus for behavioral change, a means of monitoring health changes, a growing trend in service delivery, and an emerging health frontier worldwide. Together, these chapters point to the continued expansion-and global reach-of mobile technology in the next stage of healthcare services. Included in the coverage: Behavior change techniques used in mobile applications targeting physical activity: a systematic review Mobile health integration in pregnancy Unintended users, uses, and consequences of mobile weight loss apps: using eating disorders as a case study Intention vs. perception: understanding the differences in physicians' attitudes towards mobile health applications HealthGuide: a personalized mobile patient guidance system Adoption of sensors in mobile health Current and Emerging mHealth Technologies is salient reading for researchers interested in mobile health development and implementation as well as technology adoption, and mobile health system developers and managers who are interested in the implications of mobile health use by patients and/or healthcare professionals. It can also be used for courses in technology adoption and health technologies.
This book explores various applications of deep learning-oriented diagnosis leading to decision support, while also outlining the future face of medical decision support systems. Artificial intelligence has now become a ubiquitous aspect of modern life, and especially machine learning enjoysgreat popularity, since it offers techniques that are capable of learning from samples to solve newly encountered cases. Today, a recent form of machine learning, deep learning, is being widely used with large, complex quantities of data, because today's problems require detailed analyses of more data. This is critical, especially in fields such as medicine. Accordingly, the objective of this book is to provide the essentials of and highlight recent applications of deep learning architectures for medical decision support systems. The target audience includes scientists, experts, MSc and PhD students, postdocs, and any readers interested in the subjectsdiscussed. The book canbe used as a reference work to support courses on artificial intelligence, machine/deep learning, medical and biomedicaleducation.
Antimicrobial Activity of Nanoparticles: Applications in Wound Healing and Infection Treatment presents the state of the art among nanotechnological approaches used in the treatment of infections. This field has gained a large amount of interest over the past few years, in response to the increasing resistance of pathogens to antibiotics. Leading researchers from around the world discuss the synthesis routes of nanobiomaterials, characterization, and their applications as antimicrobial agents. The book covers various aspects: from antiviral and antibacterial nanoparticles, to the functionalization of nanoparticles and their toxicity to human cells. This book offers an advanced reference text for biomedical engineers, materials scientists, clinicians, and biochemists, with an interest in nanomedicine and infection control.
The term "muscular dystrophy" (MD) describes a group of primary genetic disorders of muscle that often have a distinctive and recognizable clinical p- notype, accompanied by characteristic, but frequently not pathognomonic, pathological features. Research into the molecular basis of the MDs by a c- bination of positional cloning and candidate gene analysis has provided the basis for a reclassification of these disorders, with genetic and protein data augmenting traditional clinically based nomenclature. These findings have brought insights into the molecular pathogenesis of MD, with an increasing number of potential pathways involved in arriving at a dystrophic phenotype. Some common themes can be recognized, however, including the involvement of five members of the dystrophin-associated complex (dystrophin and four sarcoglycans) in different types of MD, and the involvement of two nuclear envelope proteins in producing an Emery-Dreifuss MD phenotype. Other d- ease-associated genes appear to cause MD in a completely unrelated way, such as the involvement of calpain 3 in a form of limb-girdle muscular dystrophy. Section 1 of Muscular Dystrophy: Methods and Protocols reviews tra- tional strategies used to identify MDs. Meantime, techniques developed as a result of the research strategies described previously have become an integral part of the management of many patients with MD and their families, and these techniques are addressed in Sections 2 (DNA-based tests) and 3 (p- tein-based analyses). The continued effort to translate this enhanced und- standing into a molecular cure or treatment for MD is reviewed in Section 4. |
![]() ![]() You may like...
Facing the Catastrophe - Jews and…
Beate Kosmala, Georgi Verbeeck
Hardcover
R3,551
Discovery Miles 35 510
Matters of Testimony - Interpreting the…
Nicholas Chare, Dominic Williams
Hardcover
R3,021
Discovery Miles 30 210
The Last Deposit - Swiss Banks and…
Natasha Dornberg, Itamar Levin
Hardcover
R1,516
Discovery Miles 15 160
The Germans and the Holocaust - Popular…
Susanna Schrafstetter, Alan E. Steinweis
Paperback
R607
Discovery Miles 6 070
|