![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > General issues > Medical equipment & techniques > General
The medical device and drug industries standards in analytical methodology and are consistently among the strongest techno- quality control. logical performers. Materials are a key The users of Biomaterials Engineering ingredient in their dynamic growth. Devel- and Devices: Human Applications will r- opment of these materials is in a constant resent a broad base of backgrounds ranging state of activity, with the challenge of re- from the basic sciences (e. g. , polymer placing old materials that cannot withstand chemistry and biochemistry) to more the tests of time, and the new materials' applied disciplines (e. g. , mechanical/ needs coming to the forefront in modern chemical engineering, orthopedics, and applications. This new reference text, pharmaceutics). To meet varied needs, each Biomaterials Engineering and Devices: chapter provides clear ancd fully detailed Human Applications, focuses on materials discussions. This in-depth, but practical, used in or on the human body-materials coverage should also assist recent indu- that define the world of "biomaterials. " ees to the biomaterials circle. The editors Biomaterials Engineering and Devices: trust that this reference textbook conveys Human Applications focuses on mate- the intensity of this fast moving field in an rials development and characterization. enthusastic presentation. Chapters deal with issues in the selection of Donald L. Wise, PHD proper biomaterials from biocompatibility Debra J. Trantolo, PHD to biostability to structure/function relation- Kai-Uwe Lewandrowski, MD ships. Chapters also focus on the use of Joseph D. Gresser, PHD specific biomaterials based on their physio- Mario V.
"After decades of research on dysfunctional eating and lack of physical activity, research attention has finally turned to the role of digital technology in eating behaviors and eating disorders. This timely volume offers a thoughtful and wide collection of chapters discussing the possible effects of digital technologies, from those enhancing healthy eating behaviors to those that encourage disordered eating. Highly recommended for both professionals and scholars." Prof. Giuseppe Riva, Universita Cattolica del Sacro Cuore, Milan, Italy. This book examines in depth the multifaceted roles of digital technologies in the eating behaviors and eating disorders. Coverage reflects a broad theoretical and empirical knowledge of current trends in digital technology use in health behaviors, and their risks and benefits affecting wellbeing, with focus on eating behaviors and eating disorders. The authors use both qualitative and quantitative data to focus on the digital lived experiences of people and their eating related behaviors. Among the topics covered: The quality of eating-oriented information online Technology, body image, and disordered eating Eating-oriented online groups Using mobile technology in eating behaviors Usage of digital technology among people with eating disorders What healthcare professionals should know about digital technologies and eating disorders Technology-based prevention and treatment programs for eating disorders A potential source of discussion and debate in various fields across the social sciences, the health sciences, and psychology, Digital Technology, Eating Behaviors, and Eating Disorders will be especially useful to students, academics, researchers, and professionals working in the fields of eating behaviors and eating disorders.
The goal of tissue engineering is to repair or replace tissues and organs by delivering implanted cells, scaffolds, DNA, proteins, and/or protein fragments at surgery. Tissue engineering merges aspects of engineering and biology, and many rapid achievements in this field have arisen in part from significant advances in cell and molecular biology. Functional Tissue Engineering addresses the key issues in repairing and replacing load-bearing structures effectively. What are the thresholds of force, stress, and strain that normal tissues transmit or encounter? What are the mechanical properties of these tissues when subjected to expected in vivo stresses and strains, as well as under failure conditions? Do tissue engineered repairs and replacements need to exactly duplicate the structure and function of the normal tissue or organ? When developing these implants in culture, how do physical factors such as mechanical stress regulate cell behavior in bioreactors as compared to signals experienced in vivo? And finally, can tissue engineers mechanically stimulate these implants before surgery to produce a better repair outcome? Chapters written by well-known researchers discuss these matters and provide guidelines and a summary of the current state of technology. Functional Tissue Engineering will be useful to students and researchers as it will remind tissue engineers of the clinical importance of restoring function to damaged tissue and structures. Further, the book clarifies the identification of critical structural and mechanical requirements needed for each construct. Functional Tissue Engineering also provides an invaluable resource to help tissue engineers incorporate these functional criteria into the design, manufacture, and optimization of tissue engineered products. Finally it serves as a reference and teaching text for the rapidly increasing population of students and investigators in the field of tissue engineering.
Bioinformatics and Drug Discovery describes the bioinformatic approaches and techniques employed along the pipeline of drug development from genes to proteins to drugs. The book focuses on gene microarray analysis and techniques for target identification and validation. In addition, clinical applications showing how the analysis can be used for prognostication and diagnosis are described. The second section focuses on protein analysis, including target validation and identification using modern proteomic analysis as well as protein modeling techniques. The third section discusses chemoinformatics, including virtual screening and how to computationally approach chemical space.
-
Implementation of Smart Healthcare Systems using AI, IoT, and Blockchain provides imperative research on the development of data fusion and analytics for healthcare and their implementation into current issues in a real-time environment. While highlighting IoT, bio-inspired computing, big data, and evolutionary programming, the book explores various concepts and theories of data fusion, IoT, and Big Data Analytics. It also investigates the challenges and methodologies required to integrate data from multiple heterogeneous sources, analytical platforms in healthcare sectors. This book is unique in the way that it provides useful insights into the implementation of a smart and intelligent healthcare system in a post-Covid-19 world using enabling technologies like Artificial Intelligence, Internet of Things, and blockchain in providing transparent, faster, secure and privacy preserved healthcare ecosystem for the masses.
In the last two centuries, medicine has been transformed by a number of major technological and organisational innovations. This edited collection examines the role of medical technologies in the history of medicine, of new diagnostic and therapeutic tools, prostheses and apparatus. The volume also discusses the social, cultural, political and economic contexts from which these medical technologies emerged, and, in turn, how technical innovations gave rise to new social constellations. A central purpose of the volume is to show what consequences new practices linked to the uptake of certain technologies had for the history of medicine more widely.
This monograph explores Intrabody communication (IBC) as a novel non-RF wireless data communication technique using the human body itself as the communication channel or transmission medium. In particular, the book investigates Intrabody Communication considering limb joint effects within the transmission frequency range 0.3-200 MHz. Based on in-vivo experiments which determine the effects of size, situations, and locations of joints on the IBC, the book proposes a new IBC circuit model explaining elbow joint effects. This model not only takes the limb joint effects of the body into account but also considers the influence of measurement equipment in higher frequency band thus predicting signal attenuation behavior over wider frequency ranges. Finally, this work proposes transmitter and receiver architectures for intrabody communication. A carrier-free scheme based on impulse radio for the IBC is implemented on a FPGA.
This volume covers some of the topics that are related to the rapidly growing field of biomedical informatics. In June 11-12, 2010 a workshop entitled 'Optimization and Data Analysis in Biomedical Informatics' was organized at The Fields Institute. Following this event invited contributions were gathered based on the talks presented at the workshop, and additional invited chapters were chosen from world's leading experts. In this publication, the authors share their expertise in the form of state-of-the-art research and review chapters, bringing together researchers from different disciplines and emphasizing the value of mathematical methods in the areas of clinical sciences. This work is targeted to applied mathematicians, computer scientists, industrial engineers, and clinical scientists who are interested in exploring emerging and fascinating interdisciplinary topics of research. It is designed to further stimulate and enhance fruitful collaborations between scientists from different disciplines.
Within the various aspects of life-science technologies medicine and information technology will change next millennium's quality-of-life fundamentally. Thanks to the rapid growth of telecommunication industry and the success and popularity of the internet the face of medicine will essentially change, because information technology is expected to play a major role in future health care systems. The conference MEDICOM 2000 is a discussion forum on fast and cost efficient patient-data exchange systems between doctors' offices, medical laboratories, telearchive services, health care insurances, highly specialized experts in hospitals etc. The conference brought together scientific, medical and application experts from university, clinical and commercial sites of both areas - medicine and communication - to stimulate synergy between these rapidly evolving future technologies. We would like to acknowledge all the parties who contributed to the success of the conference. Especially, we would like to thank Gisela Niedzwetzki and Waltraud Ott for secretarial support as well as Dirk Thomsen for web mastering. Additionally, we have to acknowledge the valuable support of Holger Dorle, Thomas Giese, Peter Just, Stefan Klockner, Heike Lahr and Kerstin Ltidtke-Buzug during the conference.
This book describes more than 60 web-accessible computational tools for protein analysis and is totally practical, with detailed explanations on how to use these tools and interpret their results and minimal mentions to their theoretical basis (only when that is required for making a better use of them). It covers a wide range of tools for dealing with different aspects of proteins, from their sequences, to their three-dimensional structures, and the biological networks they are immersed in. The selection of tools is based on the experience of the authors that lead a protein bioinformatics facility in a large research centre, with the additional constraint that the tools should be accessible through standard web browsers without requiring the local installation of specific software, command-line tools, etc. The web tools covered include those aimed to retrieve protein information, look for similar proteins, generate pair-wise and multiple sequence alignments of protein sequences, work with protein domains and motifs, study the phylogeny of a family of proteins, retrieve, manipulate and visualize protein three-dimensional structures, predict protein structural features as well as whole three-dimensional structures, extract biological information from protein structures, summarize large protein sets, study protein interaction and metabolic networks, etc. The book is associated to a dynamic web site that will reflect changes in the web addresses of the tools, updates of these, etc. It also contains QR codes that can be scanned with any device to direct its browser to the tool web site. This monograph will be most valuable for researchers in experimental labs without specific knowledge on bioinformatics or computing.
In this book, leading authors in the field discuss the habitats of tomorrow. These habitats will be connected through autonomous and assistive systems, turning habitats into health resorts. This book discusses how assistance technologies enable a smooth transition from comfortable health support to medical or nursing care. The contributions have been chosen and invited at the 9th AAL congress, Frankfurt.
This volume is a result of the fruitful and vivid discussions during the MedDecSup'2012 International Workshop bringing together a relevant body of knowledge, and new developments in the increasingly important field of medical informatics. This carefully edited book presents new ideas aimed at the development of intelligent processing of various kinds of medical information and the perfection of the contemporary computer systems for medical decision support. The book presents advances of the medical information systems for intelligent archiving, processing, analysis and search-by-content which will improve the quality of the medical services for every patient and of the global healthcare system. The book combines in a synergistic way theoretical developments with the practicability of the approaches developed and presents the last developments and achievements in medical informatics to a broad range of readers: engineers, mathematicians, physicians, and PhD students.
Antimicrobial Activity of Nanoparticles: Applications in Wound Healing and Infection Treatment presents the state of the art among nanotechnological approaches used in the treatment of infections. This field has gained a large amount of interest over the past few years, in response to the increasing resistance of pathogens to antibiotics. Leading researchers from around the world discuss the synthesis routes of nanobiomaterials, characterization, and their applications as antimicrobial agents. The book covers various aspects: from antiviral and antibacterial nanoparticles, to the functionalization of nanoparticles and their toxicity to human cells. This book offers an advanced reference text for biomedical engineers, materials scientists, clinicians, and biochemists, with an interest in nanomedicine and infection control.
The health care delivery system, its organizations, and its supporting industries are currently undergoing immense changes and at the center of this change is technology. This book is about the management of this technology. The authors refer to this new intellectual space as the Management of Medical Technology (MMT). From the core activities of delivering medical care, to the supporting industries producing technical systems, pharmaceuticals, medical devices, information technology, and finally to the insurers of health care - all of these demonstrate the central role technology plays in delivering health. Management of Medical Technology examines the many aspects of managing medical technology, discusses its key issues, and outlines how it can be managed more effectively. This is a foundational book in Kluwer's Series on MMT. It is designed for academics and students in all areas of management related to health care, as a text for related undergraduate and graduate courses, as well as a reference book for health care executives and managers of technology in industry. The book is divided into three complementary parts. Part 1 explores the theory of MMT and in six chapters outlines the new intellectual space of MMT and its theoretical background. Part 2 is dedicated to the practice of MMT. This part has six chapters and describes the two main empirical studies conducted by the authors on MMT; one study examined how hospitals currently manage medical technology and the second study investigated the management of medical information technology. Moreover, related to the practice of MMT, this part also discusses in detail issues of effectiveness of delivery, patient value and patientwelfare, and education in MMT. Part 3 is a thorough treatment of MMT cases in a variety of health care organizations, each describing a different phenomenon in the practice of MMT. Eleven cases are included, with discussion questions for use in the classroom.
Recent years have seen the development of two significant trends namely: the adoption of some Traditional Chinese Medicine Practices into mainstream Allopathic Western Medicine and the advent of the internet and broad band networks leading to an increased interest in the use of Telemedicine to deliver medical services. In this book, we see the convergence of these two trends leading to a semantically-based TCM Telemedicine system that utilizes an ontology to provide sharable knowledge in the TCM realm to achieve this. The underpinning research required the development of a three-layer architecture and an Ontology of the TCM knowledge. As TCM knowledge like all medical knowledge is not frozen in time it was important to develop an approach that would allow evolution of the Ontology when new evidence became available. In order for the system to be practically grounded it was important to work with an industry partner PuraPharm Group/HerbMiners Informatics Limited. This partnership was initiated through Professor Allan Wong and the Chairman of PuraPharm Group Mr. Abraham Chan. This led to the system being utilized in more than 20 Mobile Clinics in Hong Kong and 300 Hospitals in China. In order for these different deployments of the system to be coherent with the main core Ontology, it was necessary for us to develop an Ontology Driven Software System Generation approach.
Microbial applications encompass areas including biotechnology, chemical engineering, and alternative fuel development. Research on their technological developments cover many aspects of work using microbes as cell factories. The fields of biotechnology, chemical engineering, pharmaceuticals, diagnostics and medical device development also employ these microbial products. There is an urgent need to integrate all these disciplines that caters to the need of all those who are interested to work in the area of microbial technologies. This book is a step forward to integrate the aforesaid frontline branches into an interdisciplinary research work quenching the academic as well as research thirst of all those concerned about microbes in the respective area of biotechnology, chemical engineering, and pharmaceuticals. All the chapters in this book are related to important research on microbial applications, written by international specialists for researchers and academics in the concerned disciplines. This publication aims to provide a detailed compendium of experimental work and information used to investigate different aspects of microbial technologies, their products as well as interdisciplinary interactions including biochemistry of metabolites, in a manner that reflects the recent developments of relevance to researchers/scientists investigating microbes.
The present book entitled "Novel Frontiers in the Production of Compounds for Biomedical Uses" can perhaps be placed in its best perspective by the Shakespearean character in The Tempest who exclaimed" What's past is prologue." Indeed, this compilation of some of the outstanding presentations in the field of biomedicine made at th the 9 European Congress on Biotechnology (Brussels, Belgium, July 11-15, 1999) not only reflects the achievements of the recent past, but provides a privileged glimpse of the biotechnology that is emerging in the first decade of the new Millennium. It is becoming increasingly apparent that biotechnology is offering biomedicine novel approaches and solutions to develop a sorely needed new generation of biopharmaceuticals. This is all the more necessary because in recent years, new diseases have emerged with extraordinary lethality in all corners of the globe, while age-related chronic illnesses have filled the gap wherever biomedicine has made successful inroads. The rise of antibiotic resistance also poses major threats to public health. Thus, as disease patterns evolve, the rational development of new drugs is becoming urgent, not only for the clinical outcome of patients, but also in optimising the allocation of scarce health care resources through the use of cost-effective productions methods. It is in response to all these challenges that biotechnology offers new strategies that go beyond the more traditional approaches. By the mid-1990's, the number of recombinant products approved annually for therapeutic use reached double digits. With the advent of the genomics revolution.
This book describes the emerging point-of-care (POC) technologies that are paving the way to the next generation healthcare monitoring and management. It provides the readers with comprehensive, up-to-date information about the emerging technologies, such as smartphone-based mobile healthcare technologies, smart devices, commercial personalized POC technologies, paper-based immunoassays (IAs), lab-on-a-chip (LOC)-based IAs, and multiplex IAs. The book also provides guided insights into the POC diabetes management software and smart applications, and the statistical determination of various bioanalytical parameters. Additionally, the authors discuss the future trends in POC technologies and personalized and integrated healthcare solutions for chronic diseases, such as diabetes, stress, obesity, and cardiovascular disorders. Each POC technology is described comprehensively and analyzed critically with its characteristic features, bioanalytical principles, applications, advantages, limitations, and future trends. This book would be a very useful resource and teaching aid for professionals working in the field of POC technologies, in vitro diagnostics (IVD), mobile healthcare, Big Data, smart technology, software, smart applications, biomedical engineering, biosensors, personalized healthcare, and other disciplines.
Multipotent mesenchymal stem cells (MSCs) are a heterogeneous population of cells which reside in a variety of tissues. They differentiate into several mesodermal lineages, secrete a multitude of trophic factors and contribute to tissue homeostasis. MSCs are able to exert immunosuppressive activities by interfering with inflammatory cytokine production and with T- and B-cell proliferation. These immunomodulating properties make MSCs promising candidates for the treatment of chronic inflammatory and autoimmune disorders. There are, however, certain caveats involved including inappropriate migration of cells in the body, immune rejection, tumor formation, or graft versus host disease (GvHD). This book investigates the current state of the MSC-dependent therapy of chronic inflammatory disorders and autoimmune diseases. Among the covered topics are GvHD, chronic kidney, liver and lung disease, ischemic heart and inflammatory bowel disease, diabetes, osteoarthritis, various rheumatic and neurological disorders and, lastly, tumors and solid organ transplantations. This book also questions the immunoprivileged status of MSCs, discusses the therapeutic role of MSCs in experimental animal disease models and their translation to the corresponding human disorders, envisions a role for MSCs in tumor interventions and, lastly, describes a systems biology approach for stem cells and inflammation. |
You may like...
Stable Numerical Schemes for Fluids…
Cornel Marius Murea
Hardcover
High-Density Sequencing Applications in…
Agamemnon J. Carpousis
Hardcover
R4,329
Discovery Miles 43 290
Open-Channel Microfluidics…
Jean Berthier, Ashleigh B. Theberge, …
Paperback
R756
Discovery Miles 7 560
Jack Sabin, Scientist and Friend, Volume…
Jens Oddershede, Erkki J. Brandas
Hardcover
R5,223
Discovery Miles 52 230
Convective Heat Transfer - Mathematical…
I. Pop, Derek B. Ingham
Hardcover
R6,743
Discovery Miles 67 430
Computational Flight Testing - Results…
Norbert Kroll, Rolf Radespiel, …
Hardcover
R4,692
Discovery Miles 46 920
Nanofluids and Mass Transfer
Mohammad Reza Rahimpour, Mohammad Amin Makarem, …
Paperback
R4,682
Discovery Miles 46 820
|