Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Medicine > General issues > Medical equipment & techniques > General
In recent years there have been tremendous advances in the fields of chemistry, physics and biology which have a direct impact on advances in biomaterials science. Many areas of healthcare depend upon the development of novel biomaterials. This book contains contribution from scientists who have made numerous innovative and exciting advances in the field of biomedical materials. The latest advances in the field are covered including studies of cell interactions with biomaterials. The assessment of the potential applications for the development of new biomaterials, tissue engineering and future medical devices are discussed. It will also provide an opportunity to discuss the latest developments in the field and the vision for the future. The book clearly illustrates how basic and applied research are being combined to produce novel biomaterials.
Network Science is the emerging field concerned with the study of large, realistic networks. This interdisciplinary endeavor, focusing on the patterns of interactions that arise between individual components of natural and engineered systems, has been applied to data sets from activities as diverse as high-throughput biological experiments, online trading information, smart-meter utility supplies, and pervasive telecommunications and surveillance technologies. This unique text/reference provides a fascinating insight into the state of the art in network science, highlighting the commonality across very different areas of application and the ways in which each area can be advanced by injecting ideas and techniques from another. The book includes contributions from an international selection of experts, providing viewpoints from a broad range of disciplines. It emphasizes networks that arise in nature-such as food webs, protein interactions, gene expression, and neural connections-and in technology-such as finance, airline transport, urban development and global trade. Topics and Features: begins with a clear overview chapter to introduce this interdisciplinary field; discusses the classic network science of fixed connectivity structures, including empirical studies, mathematical models and computational algorithms; examines time-dependent processes that take place over networks, covering topics such as synchronisation, and message passing algorithms; investigates time-evolving networks, such as the World Wide Web and shifts in topological properties (connectivity, spectrum, percolation); explores applications of complex networks in the physical and engineering sciences, looking ahead to new developments in the field. Researchers and professionals from disciplines as varied as computer science, mathematics, engineering, physics, chemistry, biology, ecology, neuroscience, epidemiology, and the social sciences will all benefit from this topical and broad overview of current activities and grand challenges in the unfolding field of network science.
International biobank collaborations allow for studies with large number of subjects where generalizability of findings across populations can be investigated, which means establishing quality criteria concerning the nature of the sample, conditions of sample storage, and the adequacy of available information is of vital importance. Methods in Biobanking brings together contributions from experts in the field in order to aid in the establishment of this much needed consistency. The volume discusses how to use existing collections of biological material to answer significant questions concerning the cause of disease without violating the personal integrity of participating sample donors, the ethical issues surrounding biobanks, guidelines for the use of coding systems and the use of biocomputing and registry linkages in research projects, as well as many other key subjects. As a volume in the highly successful Methods in Molecular Biology (TM) series, this collection provides the kind of detailed description and implementation advice that is crucial for getting optimal results. Authoritative and cutting-edge, Methods in Biobanking seeks to provide scientists with the tools necessary to take advantage of the tremendous current resources of the world's biobanks and strengthen those resources for the future.
This concise monograph series focuses on the implementation of various engineering principles in the conception, design, development, analysis and operation of biomedical, biotechnological and nanotechnology systems and applications. Authors are encouraged to submit their work in the following core topics, but authors should contact the commissioning editor before submitting a proposal: BIoMeDIcAL DeVIceS & MATeRIALS Trauma Analysis Vibration and Acoustics in Biomedical Applications Innovations in Processing, Characterization and Applications of Bioengineered Materials Viscoelasticity of Biological Tissues and Ultrasound Applications Dynamics, and Control in Biomechanical Systems Clinical Applications of Bioengineering Transport Phenomena In Biomedical Applications Computational Modeling and Device Design Safety and Risk Analysis of Biomedical Engineering Modeling and Processing of Bioinspired Materials and Biomaterials NANoMeDIcAL DeVIceS & MATeRIALS Bio Nano Materials Nano Medical Sciences Materials for Drug & Gene Delivery Nanotechnology for Central Nervous System Nanomaterials & Living Systems Interactions Biosensing, Diagnostics & Imaging Cancer Nanotechnology Micro & Nano Fluidics Environmental Health & Safety Soft Nanotechnology & Colloids
This book provides an insight on the importance that Internet of Things (IoT) and Information and Communication Technology (ICT) solutions can have in taking care of people's health. Key features of this book present the recent and emerging developments in various specializations in curing health problems and finding their solutions by incorporating IoT and ICT. This book presents useful IoT and ICT applications and architectures that cater to their improved healthcare requirements. Topics include in-home healthcare services based on the Internet-of-Things; RFID technology for IoT based personal healthcare; Real-time reporting and monitoring; Interfacing devices to IoT; Smart medical services; Embedded gateway configuration (EGC); Health monitoring infrastructure; and more. Features a number of practical solutions and applications of IoT and ICT on healthcare; Includes application domains such as communication technology and electronic materials and devices; Applies to researchers, academics, students, and practitioners around the world.
Over the years, medical informatics has matured into a true scientific discipline. Fundamental and applied aspects are now taught in various fields of health, including medicine, dentistry, pharmacy, nursing and public health. Medical informatics is also often included in the curricula of many other disciplines, including the life sciences, engineering and economics. Medical informatics is a complex and rapidly changing discipline. Relatively few books have been published on the subject, and they rapidly become obsolete. This book is the fruit of a collaborative effort between authors teaching medical informatics in France and others who are conducting research in this field. In addition, an international perspective was pursued, as reflected in the inclusion of various developments and actions in both the USA and Europe. This book is divided into 18 chapters, all of which include learning objectives, recommendations for further reading, exercises and bibliographic references.
This open access book offers a detailed account of a range of mHealth initiatives across South, Southeast and East Asia. It provides readers with deep insights into the challenges such initiatives face on the ground, and a view of the diverse cultural contexts shaping strategies for overcoming these challenges. The book brings together various discussions on the broader mHealth literature, and demonstrates how a research focus on diverse Asian contexts influences the success and/or failure of current mHealth initiatives. It also highlights the important roles social scientists can play in advancing theoretical approaches, as well as planning, implementing and evaluating mHealth initiatives. The book is a valuable resource for project planners, policy developers in NGOs and government institutions, as well as academics, researchers and students in the fields of public health, communications and development studies.
This book on Infectious Disease Informatics (IDI) and biosurveillance is intended to provide an integrated view of the current state of the art, identify technical and policy challenges and opportunities, and promote cross-disciplinary research that takes advantage of novel methodology and what we have learned from innovative applications. This book also fills a systemic gap in the literature by emphasizing informatics driven perspectives (e.g., information system design, data standards, computational aspects of biosurveillance algorithms, and system evaluation). Finally, this book attempts to reach policy makers and practitioners through the clear and effective communication of recent research findings in the context of case studies in IDI and biosurveillance, providing "hands-on" in-depth opportunities to practitioners to increase their understanding of value, applicability, and limitations of technical solutions. This book collects the state of the art research and modern perspectives of distinguished individuals and research groups on cutting-edge IDI technical and policy research and its application in biosurveillance. The contributed chapters are grouped into three units. Unit I provides an overview of recent biosurveillance research while highlighting the relevant legal and policy structures in the context of IDI and biosurveillance ongoing activities. It also identifies IDI data sources while addressing information collection, sharing, and dissemination issues as well as ethical considerations. Unit II contains survey chapters on the types of surveillance methods used to analyze IDI data in the context of public health and bioterrorism. Specific computational techniques covered include: text mining, time series analysis, multiple data streams methods, ensembles of surveillance methods, spatial analysis and visualization, social network analysis, and agent-based simulation. Unit III examines IT and decision support for public health event response and bio-defense. Practical lessons learned in developing public health and biosurveillance systems, technology adoption, and syndromic surveillance for large events are discussed. The goal of this book is to provide an understandable interdisciplinary IDI and biosurveillance reference either used as a standalone textbook or reference for students, researchers, and practitioners in public health, veterinary medicine, biostatistics, information systems, computer science, and public administration and policy.
This book focuses on signal processing techniques used in computational health informatics. As computational health informatics is the interdisciplinary study of the design, development, adoption and application of information and technology-based innovations, specifically, computational techniques that are relevant in health care, the book covers a comprehensive and representative range of signal processing techniques used in biomedical applications, including: bio-signal origin and dynamics, sensors used for data acquisition, artefact and noise removal techniques, feature extraction techniques in the time, frequency, time-frequency and complexity domain, and image processing techniques in different image modalities. Moreover, it includes an extensive discussion of security and privacy challenges, opportunities and future directions for computational health informatics in the big data age, and addresses the incorporation of recent techniques from the areas of artificial intelligence, deep learning and human-computer interaction. The systematic analysis of the state-of-the-art techniques covered here helps to further our understanding of the physiological processes involved and expandour capabilities in medical diagnosis and prognosis. In closing, the book, the first of its kind, blends state-of-the-art theory and practices of signal processing techniques inthe health informatics domain with real-world case studies building on those theories. As a result, it can be used as a text for health informatics courses to provide medics with cutting-edge signal processing techniques, or to introducehealth professionals who are already serving in this sector to some of the most exciting computational ideas that paved the way for the development of computational health informatics.
This book surveys recent advances in theranostics based on magnetic nanoparticles, ultrasound contrast agents, silica nanoparticles and polymeric micelles. It presents magnetic nanoparticles, which offer a robust tool for contrast enhanced MRI imaging, magnetic targeting, controlled drug delivery, molecular imaging guided gene therapy, magnetic hyperthermia, and controlling cell fate. Multifunctional ultrasound contrast agents have great potential in ultrasound molecular imaging, multimodal imaging, drug/gene delivery, and integrated diagnostics and therapeutics. Due to their diversity and multifunctionality, polymeric micelles and silica-based nanocomposites are highly capable of enhancing the efficacy of multimodal imaging and synergistic cancer therapy. This comprehensive book summarizes the main advances in multifunctional nanoprobes for targeted imaging and therapy of gastric cancer, and explores the clinical translational prospects and challenges. Although more research is needed to overcome the substantial obstacles that impede the development and availability of nanotheranostic products, such nontrivial nanoagents are expected to revolutionize medical treatments and help to realize the potential of personalized medicine to diagnose, treat, and follow-up patients with cancer. Zhifei Dai is a Professor at the Department of Biomedical Engineering, College of Engineering, Peking University, China.
Heart failure affects over 5 million patients in the United States alone, and is a chronic and debilitating disease. While a number of pharmacologic therapies have shown varying degrees of effectiveness, many recent advances in the treatment of heart failure has focused on device based therapies. In Device Therapy in Heart Failure, William H. Maisel and a panel of authorities on the use and implementation of device based therapies provide a comprehensive overview of the current and developing technologies that are used to treat heart failure. Individual chapters provide an in-depth analysis of devices such as CRT's and ICD's, while broader topics such as the pathophysiology of heart failure and its current medical therapies are also discussed. Additional topics include Pacing and Defibrillation for Atrial Arrhythmias, Atrial Fibrillation Ablation, and Percutaneous Treatment of Coronary Artery Disease.
This book describes the latest advances in pulse signal analysis and their applications in classification and diagnosis. First, it provides a comprehensive introduction to useful techniques for pulse signal acquisition based on different kinds of pulse sensors together with the optimized acquisition scheme. It then presents a number of preprocessing and feature extraction methods, as well as case studies of the classification methods used. Lastly it discusses some promising directions for the future study and clinical applications of pulse signal analysis. The book is a valuable resource for researchers, professionals and postgraduate students working in the field of pulse diagnosis, signal processing, pattern recognition and biometrics. It is also useful for those involved in interdisciplinary research.
Healthcare sectors often deal with a large amount of data related to patients' care and hospital workforce management. Mistakes occur, and the impending results are disastrous for individuals' personal identity information. However, an innovative and reliable way to safeguard the identity of individuals and provide protection of medical records from criminals is already in effect. Design and Implementation of Healthcare Biometric Systems provides innovative insights into medical identity theft and the benefits behind biometrics technologies that could be offered to protect medical records from hackers and malicious users. The content within this publication represents the work of ASD screening systems, healthcare management, and patient rehabilitation. It is designed for educators, researchers, faculty members, industry practitioners, graduate students, and professionals working with healthcare services and covers topics centered on understanding the practical essence of next-generation healthcare biometrics systems and future research directions.
View the Table of Contents. "Covers its subject well, provides useful context, and makes lively reading for anyone interested in the history of technology, the social context of electricity and radioactive materials, or the history of alernative medicine."--"Technology and Culture" "Not only provides a richly detailed and suprising account of
long-forgotten artifacts, but also fleshes out the longer history
of some still-familiar attitudes toward health and vitality." "De la Pena's fascinating study melds social history with
material culture and the history of science and technology to
explain Americans' enthusiastic embrace of modern mechanization and
emergent industrial culture." "In this engaging and well-written study Carolyn Thomas de la
Pena offers a detailed cultural history of the
medical-technological interface in the period 1850-1940, and in so
doing tells us a great deal about how the body and its relation to
modernity were conceived." "Exellent. Carolyn de la Pena's superbly researched project
examines how Americans in the period between 1870 and 1935 sought
to supplement their physical energy through engagement with a
variety of popular health technologies, including muscle-building
machines: electrical invigorators, such as belts and collars: and
radioactive elixirs." "It's an irresistible account of fads and fascinating foibles,
including electric belts and radioactive tonics." "Transforming archival research into sparkling prose, "The Body
Electric" explains how Americans learned to usemachines to seek
health, sexual rejuvenation, and physical transformation. This
innovative book is both an entertaining history of fads and foibles
and a groundbreaking cultural critique of the continuing obsession
with achieving physical perfection." ""The Body Electric" is the so-far missing puzzle piece in our
nineteenth-twentieth century knowledge of the social history of the
human body and technology a richly illustrated study showing two
centuries of technologizing the human body against fears of
weakness, enervation, sexual depletion." Between the years 1850 and 1950, Americans became the leading energy consumers on the planet, expending tremendous physical resources on energy exploration, mental resources on energy exploitation, and monetary resources on energy acquisition. A unique combination of pseudoscientific theories of health and the public's rudimentary understanding of energy created an age in which sources of industrial power seemed capable of curing the physical limitations and ill health that plagued Victorian bodies. Licensed and "quack" physicians alike promoted machines, electricity, and radium as invigorating cures, veritable "fountains of youth" that would infuse the body with energy and push out disease and death. The Body Electric is the first book to place changing ideas about fitness and gender in dialogue with the popular culture of technology. Whether through wearing electric belts, drinking radium water, or lifting mechanized weights, many Americans came to believethat by embracing the nation's rapid march to industrialization, electrification, and "radiomania," their bodies would emerge fully powered. Only by uncovering this belief's passions and products, Thomas de la PeAa argues, can we fully understand our culture's twentieth-century energy enthusiasm.
This book describes the state of the art on computational modeling and fabrication in Tissue Engineering. It is inspired by the ECCOMAS thematic conference, the European Committee on Computational Methods in Applied Sciences, on Tissue Engineering, held in Lisbon, Portugal, June 2-4, 2011. Tissue Engineering is a multidisciplinary field involving scientists from different fields. The development of mathematical methods is quite relevant to understand cell biology and human tissues as well to model, design and fabricate optimized and smart scaffolds. Emphasis is put on mathematical and computational modeling for scaffold design and fabrication. This particular area of tissue engineering, whose goal is to obtain substitutes for hard tissues such as bone and cartilage, is growing in importance.
This book presents papers from HealthyIoT 2018, the fifth edition of an international scientific event series dedicated to Internet of Things and Healthcare. The papers discuss leveraging a set of existing and emerging technologies, notions and services that can provide many solutions to delivery of electronic healthcare, patient care, and medical data management. HealthyIoT brings together technology experts, researchers, industry and international authorities contributing towards the design, development and deployment of healthcare solutions based on IoT technologies, standards, and procedures. HealthyIoT 2018 is part of the 4th annual Smart City 360 Summit, promoting multidisciplinary scientific collaboration to solve complex societal, technological and economic problems of emerging Smart Cities. The event is endorsed by the European Alliance for Innovation, an international professional community-based organisation devoted to the advancement of innovation in the field of ICT. Features practical, tested applications in IoT for healthcare; Includes application domains such as eHealth Systems, smart textiles, smart caring environments, telemedicine, wellness, and health management, etc; Applicable to researchers, academics, students, and professionals.
This book presents advanced methodologies in two areas related to electroencephalogram (EEG) signals: detection of epileptic seizures and identification of mental states in brain computer interface (BCI) systems. The proposed methods enable the extraction of this vital information from EEG signals in order to accurately detect abnormalities revealed by the EEG. New methods will relieve the time-consuming and error-prone practices that are currently in use. Common signal processing methodologies include wavelet transformation and Fourier transformation, but these methods are not capable of managing the size of EEG data. Addressing the issue, this book examines new EEG signal analysis approaches with a combination of statistical techniques (e.g. random sampling, optimum allocation) and machine learning methods. The developed methods provide better results than the existing methods. The book also offers applications of the developed methodologies that have been tested on several real-time benchmark databases. This book concludes with thoughts on the future of the field and anticipated research challenges. It gives new direction to the field of analysis and classification of EEG signals through these more efficient methodologies. Researchers and experts will benefit from its suggested improvements to the current computer-aided based diagnostic systems for the precise analysis and management of EEG signals.
"This book will be a terrific introduction to the field of clinical IT and clinical informatics" -- Kevin Johnson "Dr. Braunstein has done a wonderful job of exploring a number of key trends in technology in the context of the transformations that are occurring in our health care system" -- Bob Greenes "This insightful book is a perfect primer for technologists entering the health tech field." -- Deb Estrin "This book should be read by everyone. " -- David Kibbe This book provides care providers and other non-technical readers with a broad, practical overview of the changing US healthcare system and the contemporary health informatics systems and tools that are increasingly critical to its new financial and clinical care paradigms. US healthcare delivery is dramatically transforming and informatics is at the center of the changes. Increasingly care providers must be skilled users of informatics tools to meet federal mandates and succeed under value-based contracts that demand higher quality and increased patient satisfaction but at lower cost. Yet, most have little formal training in these systems and technologies. Providers face system selection issues with little unbiased and insightful information to guide them. Patient engagement to promote wellness, prevention and improved outcomes is a requirement of Meaningful Use Stage 2 and is increasingly supported by mobile devices, apps, sensors and other technologies. Care providers need to provide guidance and advice to their patients and know how to incorporated as they generate into their care. The one-patient-at-a-time care model is being rapidly supplemented by new team-, population- and public health-based models of care. As digital data becomes ubiquitous, medicine is changing as research based on that data reveals new methods for earlier diagnosis, improved treatment and disease management and prevention. This book is clearly written, up-to-date and uses real world examples extensively to explain the tools and technologies and illustrate their practical role and potential impact on providers, patients, researchers, and society as a whole.
This book focuses on the most recent advances in the application of visualization and simulation methods to understand the flow behavior of complex fluids used in biomedical engineering and other related fields. It shows the physiological flow behavior in large arteries, microcirculation, respiratory systems and in biomedical microdevices.
This book provides an overview of new mathematical models, computational simulations and experimental tests in the field of biomedical technology, and covers a wide range of current research and challenges. The first part focuses on the virtual environment used to study biological systems at different scales and under multiphysics conditions. In turn, the second part is devoted to modeling and computational approaches in the field of cardiovascular medicine, e.g. simulation of turbulence in cardiovascular flow, modeling of artificial textile-reinforced heart valves, and new strategies for reducing the computational cost in the fluid-structure interaction modeling of hemodynamics. The book's last three parts address experimental observations, numerical tests, computational simulations, and multiscale modeling approaches to dentistry, orthopedics and otology. Written by leading experts, the book reflects the remarkable advances that have been made in the field of medicine, the life sciences, engineering and computational mechanics over the past decade, and summarizes essential tools and methods (such as virtual prototyping of medical devices, advances in medical imaging, high-performance computing and new experimental test devices) to enhance medical decision-making processes and refine implant design. The contents build upon the International Conference on Biomedical Technology 2015 (ICTB 2015), the second ECCOMAS thematic conference on Biomedical Engineering, held in Hannover, Germany in October 2015.
The National Institute for Health and Clinical Excellence (NICE) has been regarded as a role model for the implementation of cost-effectiveness analysis (CEA), and is being closely watched by health care policy makers across the globe. This book examines Britain 's highly acclaimed approach to CEA and its international potential. It dissects the robustness of the agency 's technology appraisal processes as NICE evaluates innovative methods for diagnosis and intervention. Coverage provides a step-by-step explanation of the NICE appraisal process and examines its successes and limitations.
Despite blockchain being an emerging technology that is mainly applied in the financial and logistics domain areas, it has great potential to be applied in other industries to generate a wider impact. Due to the need for social distancing globally, blockchain has great opportunities to be adopted in digital health including health insurance, pharmaceutical supply chain, remote diagnosis, and more. Revolutionizing Digital Healthcare Through Blockchain Technology Applications explores the current applications and future opportunities of blockchain technology in digital health and provides a reference for the development of blockchain in digital health for the future. Covering key topics such as privacy, blockchain economy, and cryptocurrency, this reference work is ideal for computer scientists, healthcare professionals, policymakers, researchers, scholars, academicians, practitioners, instructors, and students. |
You may like...
Intelligent Materials for Controlled…
Steven M Dinh, John DeNuzzio, …
Hardcover
R2,349
Discovery Miles 23 490
|