![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Science: general issues > Scientific equipment & techniques, laboratory equipment > General
Many chemists - especially those most brilliant in their field - fail to appreciate the power of planned experimentation. They dislike the mathematical aspects of statistical analysis. In addition, these otherwise very capable chemists also dismissed predictive models based only on empirical data. Ironically, in the hands of subject matter experts like these elite chemists, the statistical methods of mixture design and analysis provide the means for rapidly converging on optimal compositions. What differentiates Formulation Simplified from the standard statistical texts on mixture design is that the authors make the topic relatively easy and fun to read. They provide a whole new collection of insighful original studies that illustrate the essentials of mixture design and analysis. Solid industrial examples are offered as problems at the end of many chapters for those who are serious about trying new tools on their own. Statistical software to do the computations can be freely accessed via a web site developed in support of this book.
The Diels-Alder reaction mechanism was first reported in 1928 and in the last 70 years has become one of the most commonly used and studied methodologies in organic chemistry. The reaction, which involves the addition of a diene to an alkene to form a six-membered ring, is particularly important in the synthesis of compounds of practical interest such as drugs, dyes, polymers, fragrances, agrochemicals and fine chemicals. The experimental procedure is very simple with generally good yields and minor side reactions. The use of organic solvents is not always necessary - an important factor when considering greener synthetic options. This book focuses on practice, describing procedures and techniques and as well as reporting on industrial applications. Graphical illustration presents the concepts in a clear and concise format, covering procedures and techniques employed to realize selective and clean syntheses based on the Diels-Alder methodology. Key features:
In the hopes of preserving these delightful devices for future generations, this collector of slide rules covers everything one could possibly want to know about this crude form of analog computer: from its invention in the 17th century to manufacturers- retailers, 1850-1998, and the Oughtred Soci
This book was written to venture beyond interpretations of Cormac McCarthy's characters as simple, antinomian, and non-psychological; and of his landscapes as unrelated to the violent arcs of often orphaned and always emotionally isolated and socially detached characters. As McCarthy usually eschews direct indications of psychology, his landscapes allow us to infer much about their motivations. The relationship of ambivalent nostalgia for domesticity to McCarthy's descriptions of space remains relatively unexamined at book length, and through less theoretical application than close reading. By including McCarthy's latest book, this study offer the only complete study of all nine novels. Within McCarthy studies, this book extends and complicates a growing interest in space and domesticity in his work. The author combines a high regard for McCarthy's stylistic prowess with a provocative reading of how his own psychological habits around gender issues and family relations power books that only appear to be stories of masculine heroics, expressions of misogynistic fear, or antinomian rejections of civilized life.
Related Title: Laboratory Scientific Glassblowing: Advanced Techniques and Glassblowing's Place in History'If you are interested in learning about glassblowing techniques for scientific glassware, then this book is an incredible opportunity to learn from a master glassblower. Much of this information is passed down in person, and to have it available in a book such as this is a very rare opportunity that you should not pass up.'IEEE Electrical Insulation MagazineThis book explains and demonstrates the methods involved in scientific glassblowing. It describes elementary to advanced glass manipulation together with technical information on its safe use and development in the laboratory. Edited by Paul Le Pinnet (MBE), a scientific glassblower with over 50 years' experience in the field, experts in glassblowing are brought together to explain their methods and approaches used to produce a variety of glassware.Laboratory Scientific Glassblowing is a unique project which updates and develops the traditional art of glassblowing and brings it into the 21st century. New skills and materials are introduced, including descriptions of working with fused silica, on laser profile cutting and on the creation of artistic glassware in a scientific setting. Written specifically as a hands-on reference work, this book can be used as a step-by-step practical guide for practitioners and scientists as well as students and apprentices interested in the field.Contributions from: Michael Baumbach, MD of H Baumbach & Co; Paul Rathmill, Enterprise Q; William Fludgate, MD BioChem Glass (app) Ltd; Ian Pearson (Past Chairman BSSG), Editor, BSSG Journal; Gary Coyne, California State University USA; Konstantin Kraft-Poggensee, Former chairman, German Scientific Glassblowing Society; Keith Holden President of the Australian and New Zealand Glassblowing Society; Phil Murray, Churchill Fellow.
Related Title: Laboratory Scientific Glassblowing: Advanced Techniques and Glassblowing's Place in History'If you are interested in learning about glassblowing techniques for scientific glassware, then this book is an incredible opportunity to learn from a master glassblower. Much of this information is passed down in person, and to have it available in a book such as this is a very rare opportunity that you should not pass up.'IEEE Electrical Insulation MagazineThis book explains and demonstrates the methods involved in scientific glassblowing. It describes elementary to advanced glass manipulation together with technical information on its safe use and development in the laboratory. Edited by Paul Le Pinnet (MBE), a scientific glassblower with over 50 years' experience in the field, experts in glassblowing are brought together to explain their methods and approaches used to produce a variety of glassware.Laboratory Scientific Glassblowing is a unique project which updates and develops the traditional art of glassblowing and brings it into the 21st century. New skills and materials are introduced, including descriptions of working with fused silica, on laser profile cutting and on the creation of artistic glassware in a scientific setting. Written specifically as a hands-on reference work, this book can be used as a step-by-step practical guide for practitioners and scientists as well as students and apprentices interested in the field.Contributions from: Michael Baumbach, MD of H Baumbach & Co; Paul Rathmill, Enterprise Q; William Fludgate, MD BioChem Glass (app) Ltd; Ian Pearson (Past Chairman BSSG), Editor, BSSG Journal; Gary Coyne, California State University USA; Konstantin Kraft-Poggensee, Former chairman, German Scientific Glassblowing Society; Keith Holden President of the Australian and New Zealand Glassblowing Society; Phil Murray, Churchill Fellow.
Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.
Drugs of Abuse: Neurological Reviews and Protocols is intended to provide insightful reviews of key current topics and, particularly, state-- the-art methods for examining drug actions in their various neuroanato- cal, neurochemical, neurophysiological, neuropharmacological, and molecular perspectives. The book should prove particularly useful to n- comers (graduate students and technicians) in this field, as well as to those established scientists (neuroscientists, biochemists, and molecular biologists) intending to pursue new careers or directions in the study of drugs. The book's protocols cover a wide variety of coherent methods for gathering inf- mation on quantitative changes in proteins and mRNAs at both tissue and cel- lar levels. Inducible gene expression in striatal neurons has been a hot topic over the last decade. Alterations in gene expression for a wide range of proteins in the striatum have been investigated in response to drug administration. Altered expression of given mRNAs and their product proteins constitutes essential molecular steps in the development of neuroplasticity related to long-term addictive properties of drugs of abuse. With the multiple labeling methods that are also described in the book, gene expression can be detected in a chemically identified cell phenotype; the expression of multiple genes of interest can be detected in a single cell simultaneously. Hundreds or thousands of gene expr- sion products can today be detected in one experimental setup using the pow- ful systematic cDNA macroarray or microarray screening technology. Moreover, protocols useful in analyzing the functional roles of genes and proteins (e. g.
Archaeologists and archaeology students have long since needed an authoritative account of the techniques now available to them, designed to be understood by non-scientists. This book fills the gap and it offers a two-tier approach to the subject. The main text is a coherent introduction to the whole field of science-based dating, written in plain langauge for non-scientists. Additional end-notes, however, offer a a more technical understanding, and cater for those who have a scientific and mathematical background.
THIS VOLUME, LIKE THOSE PRIOR TO IT, FEATURES CHAPTERS BY EXPERTS IN VARIOUS FIELDS OF COMPUTATIONAL CHEMISTRY. Volume 23 COVERS LINEAR SCALING METHODS FOR QUANTUM CHEMISTRY, VARIATIONAL TRANSITION STATE THEORY, COARSE GRAIN MODELING OF POLYMERS, SUPPORT VECTOR MACHINES, CONICAL INTERSECTIONS, ANALYSIS OF INFORMATION CONTENT USING SHANNON ENTROPY, AND HISTORICAL INSIGHTS INTO HOW COMPUTING EVOLVED IN THE PHARMACEUTICAL INDUSTRY. FROM REVIEWS OF THE SERIES ""Reviews in Computational Chemistry" remains the most valuable
reference to methods and techniques in computational
chemistry." "One cannot generally do better than to try to find an
appropriate article in the highly successful "Reviews in
Computational Chemistry." The basic philosophy of the editors seems
to be to help the authors produce chapters that are complete,
accurate, clear, and accessible to experimentalists (in particular)
and other nonspecialists (in general)."
Although the difficulties many students encounter when learning chemistry have been known and explored for decades, there is no consensus on how best to assist and assess their learning. Over the past ten years, the availability of a range of technological innovations that are intended to improve student learning and assessment has made the choice of teaching and assessment strategies more complex. Many teachers are rapidly adopting new technologies in teaching and assessment although their impacts have not yet been extensively studied. Many researchers have investigated the use of specific technologies in aspects of their teaching and assessment, and this book contributes to a growing body of literature that allows some generalizations to be drawn. Most importantly, specific strategies are described in detail making it possible for others to take advantage of the learning experiences and allowing practitioners to adopt the practice best suited to their needs. General tools for chemistry education range from tailored websites (including Web 2.0 interactive features), to optimizing the use of flipped classrooms, to the application of commercial packages in a coherent manner. The book focuses on these aspects of using technology directly in teaching chemistry. One area of great interest in chemistry education is the role of the teaching laboratory and how best to optimize laboratory learning. The use of short videos, animations, and best assessment practices are also covered. The chapters in the book reflect the somewhat different teaching contexts of the countries in which the authors work.
Particle characterization is an important component in product research and development, manufacture, and quality control of particulate materials and an important tool in the frontier of sciences, such as in biotechnology and nanotechnology. This book systematically describes one major branch of modern particle characterization technology - the light scattering methods. This is the first monograph in particle science and technology covering the principles, instrumentation, data interpretation, applications, and latest experimental development in laser diffraction, optical particle counting, photon correlation spectroscopy, and electrophoretic light scattering. In addition, a summary of all major particle sizing and other characterization methods, basic statistics and sample preparation techniques used in particle characterization, as well as almost 500 latest references are provided. The book is a must for industrial users of light scattering techniques characterizing a variety of particulate systems and for undergraduate or graduate students who want to learn how to use light scattering to study particular materials, in chemical engineering, material sciences, physical chemistry and other related fields.
Proceedings of a Seminar in the CEC Programme of the Coordination of Research on Plant Protein Improvement, held in Gembloux, Belgium, Sept. 3-5, 1985
A collected series of the popular teaching articles from the open-access, online journal CBE-Life Sciences Education . The Allen-Tanner essays are practical guides that share insights and strategies for teaching science, appropriate for both the new instructor and those who have been teaching for many years.
The production and the properties of nuclei in extreme conditions, such as high isospin, temperature, angular momenta, large deformations etc., have become the subject of detailed investigations in all scientific centers. The main topics discussed at the Symposium were: Synthesis and Properties of Exotic Nuclei; Superheavy Elements; Rare Processes, Nuclear Reactions, Fission and Decays; Experimental Facilities and Scientific Projects.This book provides a comprehensive overview of the newest results of the investigations in the main scientific centers such as GSI (Darmstadt, Germany), GANIL (Caen, France), RIKEN (Wako-shi, Japan), MSU (Michigan, USA), and JINR (Dubna, Russia).
Proceedings of the 51st Course of the International School of Subnuclear Physics on 'Reflections on the next step for LHC', Erice, 24 June - 3 July 2013.
This volume is a new follow-up volume that complements Dynamic Light Scattering (1993) by the same author. The volume is directed to the recent development in the light scattering technique and to describing a wide spectrum of its applications. Both the theoretical development and utilization are traced by authors who are expert in their fields. Development in static light scattering as applied to simple liquids, polymer solutions, and multi-component polymer mixtures are dealt with. The scattering theory of colloidal dispersions is described and scattering from rod-like polyelectolytes is reviewed. There are chapters on concentrated polymer systems, aggregation phenomena, polymer-polymer interactions, polyelectrolytes in solution. Emphasis is given to more complex systems, for example, ternary polymer systems, complex micellar systems, and block copolymers in the ordered and disordered states. Low-angle light scattering is reviewed, as well as simultaneous static and dynamic light scattering. The determination of particle size distributions and combined chromatographic light scattering techniques are also treated.
Forensic and Clinical Applications of Solid Phase Extraction presents a compendium of methods and supporting data that allows the scientist to perform procedures using solid phase extraction to isolate the compounds of interest in the field of clinical and forensic toxicology. The more experienced researchers may vary the presented methods to achieve specific extractions. The methods presented have been used for hundreds of different compounds, thus the technique offers comprehensive technology to the researcher. The book teaches the required fundamentals. The methodologies make use of the latest developments in copolymeric bonded phases. By presenting organized and easy to use methodologies, this volume will encourage a wider acceptance of the technology and help many researchers to solve their individual separation problems. This volume will be of interest to clinical chemists, toxicologists, medical examiners, criminologists, hospital technicians, pharmaceutical and environmental chemists and medical school technicians.
Arising no doubt from its pre-eminence as a natural liquid, water has always been considered by chemists as the original solvent in which very varied chemical reactions can take place, both for preparational and for analytical purposes. This explains the very long-standing interest shown in the study of aqueous solutions. In this con nection, it must be stressed that the theory of Arrhenius and Ostwald (1887-1894) on electrolytic dissociation, was originally devised solely for solutions in water and that the first true concept of acidity resulting from this is linked to the use of this solvent. The more recent development of numerous physico-chemical measurement methods has made possible an increase of knowledge in this area up to an extremely advanced degree of systematization. Thus today we have available both a very large amount of experimental data, together with very refined methods of deduction and of quantitative treatment of chemical reactions in solution which enable us to make the fullest use of this data. Nevertheless, . it appears quite evident at present that there are numerous chemical processes which cannot take place in water, and that its use as a solvent imposes 2 INTRODUCTION limitations. In order to overcome these limitations, it was natural that interest should be attracted to solvents other than water and that the new possibilities thus opened up should be explored."
We are now accustomed to conceive of science as an instrumental
activity, producing numbers, measurements and graphs by means of
sophisticated devices. This book investigates the historical
process that gave rise to this instrumental culture. The
contributors trace the displacement of instruments across the
globe, the spread of practices or precision and the circulation and
appropriation of skills and knowledge.
Traditionally experimentation has been understood as an activity performed within the laboratory, but in the twenty-first century this view is being challenged. Schwarz uses ecological and environmental case studies to show how scientific experiments can transcend the laboratory.
A typical optical system is composed of three basic components: a source, a detector, and a medium in which the optical energy propagates. Many textbooks cover sources and detectors, but very few cover propagation in a comprehensive way, incorporating the latest progress in theory and experiment concerning the propagating medium. This book will fulfill that need. It is the first comprehensive and self-contained book on this topic. It will be a useful reference book for researchers, and a textbook for courses like Laser Light Propagation, Solid State Optics, and Optical Propagation in the Atmosphere.
Laymen often consider modern laboratory research to be based on an endless array of sophisticated technologies whose complex capabilities are as important to the outcome of any project as the inventiveness and creativity of the scientists who employ them. Scientists at times may share this point of view until they are con fronted by unexpected findings that demand new approaches, and they discover that yesterday's "sophisticated tools" are today's "blunt instruments." This experience provides a more sobering view of the current state of our scientific methods. It also serves as an impetus for the further development of technology that prepares us for the next stage of advance. Immunologists were confronted by such a technological crises in the late 1970s when they finally were forced to admit that poly clonal antibodies, although quite sensitive reagents, were not spe cific enough to answer many of the questions then confronting virologists and tumor biologists. The answer to the need for specific ity came with the development of monoclonal antibody technology. In the last ten years there have been considerable advances in monoclonal antibody techniques. Today these reagents are much more versatile than they were initially and can be applied to a broad range of problems. Still, most workers who are using these anti bodies are convinced that their potential is far from exhausted, and that at least in some fields we are currently in the early stages of learning how to use them properly.
Molecular Methods in Plant Pathology covers methods in phytopathology at the molecular level, including PCR techniques, electron microscopy, tissue culturing, and the cloning of disease-resistant genes. Phytopathologists, botanists, horticulturists, and anyone working in agriculture will find this a useful reference on biophysical, biochemical, biomolecular, and biotechnological methods.
Science Sifting is designed primarily as a textbook for students interested in research and as a general reference book for existing career scientists. The aim of this book is to help budding scientists broaden their capacities to access and use information from diverse sources to the benefit of their research careers.The book describes why the capacity to access and integrate both linear and nonlinear information has been an important historic feature of pivotal scientific breakthroughs. Yet, it is a process that our students are rarely, if ever, taught in universities. This book goes beyond simply describing the features of great scientific breakthroughs. It discusses the basis for accessing and using nonlinear information in the linear research context. It also provides a series of tools and exercises that can be used to enhance access to nonlinear information for application to research and other endeavors.Topics covered include focal points in scientific breakthroughs, the use of concepts maps in research, use of different vantage points, information as patterns, fractals for the scientist, memory storage and access points, and synchronicities. Young researchers need useful tools to help with a more holistic approach to their research careers. This book provides the useful tools to support flexibility and creativity across a long-term research career.Roald Hoffmann - Winner of the 1981 Nobel Prize in Chemistry - has contributed the to Science Sifting. More information on Professor Hoffmann can be found at . |
![]() ![]() You may like...
STEM Research for Students Volume 1…
Julia H Cothron, Ronald N Giese, …
Hardcover
R2,804
Discovery Miles 28 040
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,496
Discovery Miles 54 960
Integrating Information Literacy into…
Charity Lovitt, Kristen Shuyler, …
Hardcover
R5,029
Discovery Miles 50 290
Chemistry as a Second Language…
Charity Flener Lovitt, Paul Kelter
Hardcover
R2,815
Discovery Miles 28 150
Mentoring Strategies To Facilitate the…
Kerry Karukstis, Bridget Gourley, …
Hardcover
R5,672
Discovery Miles 56 720
The Future of the History of Chemical…
Leah Rae Mcewen, Robert E. Buntrock
Hardcover
R5,686
Discovery Miles 56 860
|