![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Science: general issues > Scientific equipment & techniques, laboratory equipment > General
Earlier efforts in the field of thermal analysis were concerned with the demonstration of the applicability of techniques to a broad spectrum of materials and to establish the relationship of such techniques with other more accepted methods. While such efforts will and should continue, the Third International Conference was unique in that the first standards were disclosed for differential thermal analysis. This was the culmination of the international, cooperative effort of the ICTA's Standardization Committee. The standards currently are available from the United State's National Bureau of Standards. Thus, thermal analysis can be considered to have attained its majority. Reali zation of full maturity can be expected in the near future. Inclusion of plenary lectures in these volumes represents a significant departure from previous Conferences. This change is the result of the ICTA's recognition of its educational responsibilities. In the Foreword of the Proceedings of the Second International Confer ence, Professor L. Berg expressed the hope that thermal methods of analysis would find wider application in science and technology. The citation above, together with the papers presented, indicate the fulfillment of this hope. Xerox Corporation C. B. Murphy Rochester, N.Y., U.S.A. President, ICTA 1968-1971 X Ill PREFACE For the past two decades thermoanalytical methods have reached a stage of considerable importance, which is particularly due to the developments in the area of instrumentation."
Thomas Hankins and Robert Silverman investigate an array of instruments from the seventeenth through the nineteenth century that seem at first to be marginal to science--magnetic clocks that were said to operate by the movements of sunflower seeds, magic lanterns, ocular harpsichords (machines that played different colored lights in harmonious mixtures), Aeolian harps (a form of wind chime), and other instruments of "natural magic" designed to produce wondrous effects. By looking at these and the first recording instruments, the stereoscope, and speaking machines, the authors show that "scientific instruments" first made their appearance as devices used to evoke wonder in the beholder, as in works of magic and the theater. The authors also demonstrate that these instruments, even though they were often "tricks," were seen by their inventors as more than trickery. In the view of Athanasius Kircher, for instance, the sunflower clock was not merely a hoax, but an effort to demonstrate, however fraudulently, his truly held belief that the ability of a flower to follow the sun was due to the same cosmic magnetic influence as that which moved the planets and caused the rotation of the earth. The marvels revealed in this work raise and answer questions about the connections between natural science and natural magic, the meaning of demonstration, the role of language and the senses in science, and the connections among art, music, literature, and natural science. Originally published in 1999. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
The book introduces most of the basic tools of chemometrics including experimental design, signal analysis, statistical methods for analytical chemistry and multivariate methods. It then discusses a number of important applications including food chemistry, biological pattern recognition, reaction monitoring, optimisation of processes, medical applications. The book arises from a series of short articles that have been developed over four years on Chemweb (www.chemweb.com).
Providing the knowledge and practical experience to begin analysing scientific data, this book is ideal for physical sciences students wishing to improve their data handling skills. The book focuses on explaining and developing the practice and understanding of basic statistical analysis, concentrating on a few core ideas, such as the visual display of information, modelling using the likelihood function, and simulating random data. Key concepts are developed through a combination of graphical explanations, worked examples, example computer code and case studies using real data. Students will develop an understanding of the ideas behind statistical methods and gain experience in applying them in practice. Further resources are available at www.cambridge.org/9781107607590, including data files for the case studies so students can practise analysing data, and exercises to test students' understanding.
One of the most universal functions of any scientific or engineer ing laboratory is the gathering of data to provide answers to immediate questions or information to be filed for future refer ence. Such data gathering may be achieved in various ways, depending on the nature and quantity of the information. The most prevalent of such data gathering methods is undoubtedly analog recording. Electrical analog recorders are available in a variety of sizes, speeds, sensitivities, and prices. They are suitable for recording any signal which is in, or can be converted to, electrical form. These recorders are found in every modern laboratory. Without them the importance of many functional relations would be missed altogether. How could one adequately diagnose a heart ailment without a cardiographic recorder, or obtain infrared or magnetic resonance spectra on any practicable basis without a strip-chart recorder? True, various curves that are now traced automatically with a recorder can be plotted manually from point-by-point measure ments. This procedure, however, is not only time-consuming, but may cause valid bits of information to be overlooked entirely, simply because the points were taken too far apart. Another factor favoring the use of recorders is the ability to pinpoint faulty operation of the data-gathering system. Artifacts that might not be observable at all in point-by-point observations 1 The Laboratory Recorder 2 will often be readily identifiable on a recording. Asymmetry of a peaked curve, for example, is only dearly evident in a recording.
A variety of powerful techniques for monitoring and analysing events during signal transduction at the single cell level are described in this lab manual. An introductionary section on cell handling includes guidelines for constructing a perfusion chamber. A main section of the book presents protocols on fluorescence techniques such as flow cytometry, microfluorescence, ion imaging and confocal microscopy. The electrophysiological section illustrates multiple applications of the patch-clamp technique in various cell types from both animals and plants. Emphasis is put on calibration and validation of the different techniques to measure changes of membrane potential, and intracellular ion concentration or pH.
Volume 7 Proceedings of the Eindhoven Conference June 1718 1968.
This volume contains the proceedings of the Eighth Conference on Vacuum Microbalance Techniques held at Wakefield, Massachusetts on June 12 and 13, 1969. The tenth anniversary of the first confer ence will be registered as this volume passes through the typeset ting and proofreading stages. The eight volumes that have spawned from this continuing series of conferences now contain a total of 125 papers. Thus, these volumes serve as a major repository of the world's literature on vacuum microbalance techniques. The Ninth and Tenth Conferences will be held in West Germany in June 1970 and in Texas in 1971. Each of the eight meetings has served as a forum where new developments in this rapidly advancing field can be presented and discussed constructively within a conference atmosphere of cordial informality. The interaction of the participants at the conferences has led to the first treatise on ultra mlcrogravtmetry;' edited by S. P. Wolsky and E. J. Zdanuk, with most of the fourteen chapters written by steady contributors to the volumes on Vacuum Micro balance Techniques. The number of research investigations and published works in which a vacuum microbalance is utilized con tinues to expandr apldly. f This is a direct result of several types of automatic recording balances that are now available commercial ly. 3 The Eighth Conference was held to bring together again re search scientists and engineers who exploit the measurement of mass as a means of studying physical and chemical phenomena.
Vacuum apparatus is widely used in research and industrial establishments for providing and monitoring the working environments required for the operation of many kinds of scientific instruments and process plant. The vacuum conditions needed range from the relatively coarse vacuum requirements in applications covering diverse fields such as food packaging, dentistry (investment casting), vacuum forming, vacuum metallur gical processes, vacuum impregnation, molecular distillation, vacuum drying and freeze drying etc. to the other extreme involving the highest possible vacuum as in particle accelerators, space technology -both in simulation and outer space, and research studies of atomically clean surfaces and pure condensed metal films. Vacua commence with the rough vacuum region, i.e. from atmosphere to 100 Pa * passing 6 through medium vacuum of 100 Pa to 0.1 Pa and high vacuum of 0.1 Pa to 1 J.lPa (10- Pa) until ultra high vacuum is reached below 1 J.lPa to the limit of measurable pressure about 12 I pPa (10- Pa)."
This book deals with the underlying theory and practical aspects of pressure gauges that are at present in general use. Because of the ever-increasing demands to provide a wider range of sophisticated and reliable vacuum equipment a good understanding of these instruments is of vital importance to all workers in the research and industrial sectors. Of the gauges considered only the mechanical types are absolute, in the sense that they measure pressure directly as a force upon a liquid column or a solid surface. Under ideal conditions it is possible to calculate their sensitiv ities, which are the same for all gases and vapours. The recent developments in the viscous or molecular damping gauges indicate that these may also be considered absolute. Other gauges are indirect in that they involve the measurement of some secondary phenomenon which is pressure-dependent and therefore these gauges can only be used for measurement after calibration against an absolute standard. The radiometer or Knudsen type gauge has been excluded from the text since these are now only of historic interest. Also no mention is made of the integration techniques involving surface changes (such as work function) although these could have application under very special circumstances. The McLeod gauge is dealt with in some detail, for even though this gauge has few practical applications, it is the most sensitive absolute gauge available and has value as a reference standard."
The first insights into the site and mechanisms of RNA process- ing to functional mRNA in eukaryotic cells came from the group of Georgiev (Lukanidin et al. 1972) who demonstrated the association of rapidly labelled, heterogeneous nuclear RNA (hnRNA) with a limited number of specific proteins in the cell nucleus. These "informofers", i. e. packaged precursors of mRNA (pre-mRNA or hnRNA), are in a form presumably amenable to the action of nucleases. With the availability of better analytical techniques, the considerable heterogeneity of hnRNA associated proteins was revealed (Niessing and Sekeris 1970), suggesting a role that was more composite, rather than solely structural, for these proteins. Later studies investigated the RNA binding behavior of these proteins (Schenkel et al. 1988, 1989; Wilk et al. 1983). For a long time, the small nuclear RNAs, well characterized with respect to primary structure (reviewed by Reddy and Busch 1983), were naively ignored regarding their function. Several events then set the stage for a detailed study of the intricate mechanisms of the splicing process and other steps involved in hnRNA processing: (1) The demonstration of a second class of nuclear ribonucleoproteins (RNPs), composed of small nuclear RNAs (snRNAs) and another characteristic group ofheterogene- ous proteins (Lerner et al. 1980; Guialis et al. 1983); (2) the detec- tion of the association of snRNPs with hnRNPs by virtue of base pairing between hnRNA and snRNA (Flytzanis et al.
The standard protocols for the purification of all known
cytoskeleton proteins are presented in this manual. Proteins are
listed alphabetically and each protocol follows a common format.
Thus, the manual provides a quick and easy reference to all
relevant procedures for cytoskeleton protein purification.
Neutrons are extremely versatile probes for investigating structure and dynamics in condensed matter. Due to their large penetration depth, they are ideal for in-situ measurements of samples situated in sophisticated and advanced environments. The advent of new high-intensity neutron sources and instruments, as well as the development of new real-time techniques, allows the tracking of transformation processes in condensed matter on a microscopic scale. The present volume provides a review of the state of the art of this new and exciting field of kinetics with neutrons.
Problem-solving is the cornerstone of all walks of scientific research. Fascinating Problems for Young Physicists attempts to clear the boundaries of seemingly abstract physical laws and their tangible effects through a step-by-step approach to physics in the world around us. It consists of 42 problems with detailed solutions, each describing a specific, interesting physical phenomenon. Each problem is further divided into questions designed to guide the reader through, encouraging engagement with and learning the physics behind the phenomenon. By solving the problems, the reader will be able to discover, for example, what the relation is between the mass of an animal and its expected lifetime, or what the efficiency limit is of wind turbines. Intended for first-year undergraduate students and interested high school students, this book develops inquiry-based scientific practice and enables students to acquire the necessary skills for applying the laws of physics to realistic situations.
Soft matter science is nowadays an acronym for an increasingly important class of materials, which ranges from polymers, liquid crystals, colloids up to complex macromolecular assemblies, covering sizes from the nanoscale up the microscale. Computer simulations have proven as an indispensable, if not the most powerful, tool to understand properties of these materials and link theoretical models to experiments. In this first volume of a small series recognized leaders of the field review advanced topics and provide critical insight into the state-of-the-art methods and scientific questions of this lively domain of soft condensed matter research.
This series presents critical reviews of the present and future trends in polymer and biopolymer science including chemistry, physical chemistry, physics and materials science. It is addressed to all scientists at universities and in industry who wish to keep abreast of advances in the topics covered. Impact Factor Ranking: Always number one in Polymer Science. More information as well as the electronic version of the whole content available at: www.springerlink.com
This book provides an introduction to the fundamental concepts, techniques, and methods used for electron microscopy at high resolution in space, energy, and even in time. It delineates the theory of elastic scattering, which is most useful for spectroscopies and chemical analyses. There are also discussions of the theory and practice of image calculations, and applications of HRTEM to the study of solid surfaces, highly disordered materials, solid state chemistry, minerology, semiconductors, and metals. Contributors include: J. Cowley, J. Spence, P. Buseck, P. Self, and M.A. O'Keefe. Compiled by experts in the fields of geology, physics and chemistry, this comprehensive text will be the standard reference for years to come.
Lasers are employed throughout science and technology, in fundamental research, the remote sensing of atmospheric gases or pollutants, communications, medical diagnostics and therapies, and the manufacturing of microelectronic devices. Understanding the principles of their operation, which underlie all of these areas, is essential for a modern scientific education. This text introduces the characteristics and operation of lasers through laboratory experiments designed for the undergraduate curricula in Chemistry and Physics. Introductory chapters describe the properties of light, the history of laser invention, the atomic, molecular and optical principles behind how lasers work, and the kinds of lasers available today. Other chapters include the basic theory of spectroscopy and computational chemistry used to interpret laser experiments. Experiments range from simple in-class demonstrations to more elaborate configurations for advanced students. Each chapter has historical and theoretical background, as well as options suggested for variations on the prescribed experiments. The text will be useful for undergraduates students in advanced lab classes, for instructors designing these classes, or for graduate students beginning a career in laser science.
The term scienti?c inquiry as manifest in different educational settings covers a wide range of diverse activities. The differences in types of scienti?c inquiry can be organized along a continuum according to the degree of teacher control and intellectual sophistication involved in each type of inquiry. Types of scienti?c inquiry can also be de?ned according to whether they produce cultural knowledge or personal knowledge. Authentic scienti?c inquiry is de?ned according to ?ve characteristics: devel- ment of personal and cultural knowledge; contextualized scienti?c knowledge; the progression toward high-order problem solving; social interaction for s- enti?c goals; and scienti?c inquiry as a multi-stage and multi-representational process. The de?nition of scienti?c inquiry that forms the basis for the development of an assessment program consists of a two-part analytical frame: the de?nition of knowledge types relevant to scienti?c inquiry and the de?nition of an organi- tional frame for these knowledge types. Four types of knowledge are signi?cant for the de?nition of a speci?c s- enti?c inquiry program: cognitive knowledge, physical knowledge, represen- tional knowledge, and presentational knowledge. All four of these knowledge types are considered signi?cant. These four types of knowledge are organized in a framework that consists of two intersecting axes: the axis of knowledge types and the axis of stages of a s- ci?c scienti?c inquiry. This framework describes scienti?c inquiry as multi-stage process that involves the development of a series of in-lab outcomes (represen- tions) over an extended period of time.
Recent advances in the biosciences have led to a range of powerful new technologies, particularly nucleic acid, protein and cell-based methodologies. The most recent insights have come to affect how scientists investigate and define cellular processes at the molecular level. This book expands upon the techniques included in the first edition, providing theory, outlines of practical procedures, and applications for a range of techniques. Written by a well-established panel of research scientists, the book provides an up-to-date collection of methods used regularly in the authors own research programs.
Lungenfunktionsuntersuchung, inklusive der arteriellen Blutgasanalyse, und Spiroergometrie zahlen zu den etablierten Diagnoseverfahren. Der Autor behandelt die physiologischen und physikalischen Grundlagen und vermittelt die Analyse und klinische Interpretation der Befunde: Messwerte, typische Befundmuster und ihre Deutung. Fur die 3.Auflage wurden Definitionen und Referenzwerte aktualisiert. Neu sind Themen wie die Anwendung der Wassermann schen Neunfeldertafel. Der Band enthalt die neueste Demonstrationsversion der Software Pulmopret light. |
![]() ![]() You may like...
Computer Architecture Tutorial Using an…
Robert Dunne
Hardcover
Embedded Software Verification and…
Djones Lettnin, Markus Winterholer
Hardcover
R4,213
Discovery Miles 42 130
Scalable and Near-Optimal Design Space…
Angeliki Kritikakou, Francky Catthoor, …
Hardcover
The System Designer's Guide to VHDL-AMS…
Peter J Ashenden, Gregory D. Peterson, …
Paperback
R2,421
Discovery Miles 24 210
High-Performance Computing on the Intel…
Endong Wang, Qing Zhang, …
Hardcover
Agile Software Architecture - Aligning…
Muhammad Ali Babar, Alan W. Brown, …
Paperback
Embedded Systems Design for High-Speed…
Maurizio Di Paolo Emilio
Hardcover
R4,162
Discovery Miles 41 620
The Fourth Terminal - Benefits of…
Sylvain Clerc, Thierry Di Gilio, …
Hardcover
R3,576
Discovery Miles 35 760
|