![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Science: general issues > Scientific equipment & techniques, laboratory equipment > General
Spark scientific curiosity from a young age with this six-level course through an enquiry-based approach and active learning. Collins International Primary Science fully meets the requirements of the Cambridge Primary Science Curriculum Framework from 2020 and has been carefully developed for a range of international contexts. The course is organised into four main strands: Biology, Chemistry, Physics and Earth and Space and the skills detailed under the 'Thinking and Working Scientifically' strand are introduced and taught in the context of those areas. For each Workbook at Stages 1 to 6, we offer: A write-in Workbook linked to the Student's Book New language development activities help build science vocabulary Earth and Space content covers the new curriculum framework Thinking and Working Scientifically deepens and enhances the delivery of Science skills Actively learn through practical activities that don't require specialist equipment or labs Scaffolding allows students of varying abilities to work with common content and meet learning objectives Supports Cambridge Global Perspectives (TM) with activities that develop and practise key skills Provides learner support as part of a set of resources for the Cambridge Primary Science curriculum framework (0097) from 2020 This series is endorsed by Cambridge Assessment International Education to support the new curriculum framework 0097 from 2020.
Raymond E. Barrett's Build-It-Yourself Science Laboratory is a classic book that took on an audacious task: to show young readers in the 1960s how to build a complete working science lab for chemistry, biology, and physics--and how to perform experiments with those tools. The experiments in this book are fearless and bold by today's standards--any number of the experiments might never be mentioned in a modern book for young readers! Yet, many from previous generations fondly remember how we as a society used to embrace scientific learning. This new version of Barrett's book has been updated for today's world with annotations and updates from Windell Oskay of Evil Mad Scientist Laboratories, including extensive notes about modern safety practices, suggestions on where to find the parts you need, and tips for building upon Barrett's ideas with modern technology. With this book, you'll be ready to take on your own scientific explorations at school, work, or home.
Textbook of "in vivo" Imaging in Vertebrates. Editors. Vasilis Ntziachristos Department of Radiology, Harvard University HMS/MGH, Charlestown, USA Anne Leroy-Willig U2R2M, CNRS and Universite Paris-Sud, Orsay, France Bertrand Tavitian Unite d'Imagerie de l'Expression des Genes, INSERM, Orsay, Franc This book describes the new imaging techniques being developed to monitor physiological, cellular and subcellular function within living animals. This exciting field of imaging science brings together physics, chemistry, engineering, biology and medicine to yield powerful and versatile imaging approaches. By combining advanced non-invasive imaging technologies with new mechanisms for visualizing biochemical events and protein and gene function, non-invasive vertebrate imaging enables the in vivo study of biology and offers rapid routes from basic discovery to drug development and clinical application. Combined with the availability of an increasing number of animal models of human disease, and the ability to perform longitudinal studies of disease evolution and of the long-term effects of therapeutic procedures, this new technology offers the next generation of tools for biomedical research. Well illustrated, largely in colour, the book reviews the most common and technologically advanced methods for vertebrate imaging, presented in a clear, comprehensive format. The basic principles are described, followed by several examples of the use of imaging in the study of living multicellular organisms, concentrating on small animal models of human diseases. The book illustrates: - The types of information that can be obtained with modern in vivo imaging; -The substitution of imaging methods for more destructive histological techniques; - The advantages conferred by in vivo imaging in building a more accurate picture of the response of tissues to stimuli over time while significantly reducing the number of animals required for such studies. Part 1 describes current techniques in in vivo imaging, providing specialists and laboratory scientists from all disciplines with clear and helpful information regarding the tools available for their specific research field. Part 2 looks in more detail at imaging organ development and function, covering the brain, heart, lung and others. Part 3 describes the use of imaging to monitor various new types of therapy, following the reaction in an individual organism over time, e.g. after gene or cell therapy. Most chapters are written by teams of physicists and biologists, giving a balanced coherent description of each technique and its potential applications. The book is aimed at a broad audience conducting research in areas such as biochemistry, physiology, developmental biology, oncology and pharmacology. While written primarily for those already engaged in imaging studies, it will also be of interest to scientists from other disciplines looking for an entry point into the field of in vivo imaging in small animals.
This successful text provides students majoring in biochemistry, chemistry, biology, and related fields with a modern and complete experience in experimental biochemistry. Its unique two-part organization offers flexibility to accommodate various requirements of the course, and allows students to reference detailed theory sections for clarification during labs. Part I, Theory and Experimental Techniques, provides in-depth theoretical discussion organized around important techniques. A valuable reference for instructors and students, it's particularly useful to instructors who prefer to use their own customized experiments. Part II, Experiments, offers optimum flexibility through 15 tested experiments designed to accommodate the capabilities of laboratories and students at most four-year schools. Alternate methods are suggested and labs may be divided into manageable hour segments.
A General History of Horology describes instruments used for the finding and measurement of time from Antiquity to the 21st century. In geographical scope it ranges from East Asia to the Americas. The instruments described are set in their technical and social contexts, and there is also discussion of the literature, the historiography and the collecting of the subject. The book features the use of case studies to represent larger topics that cannot be completely covered in a single book. The international body of authors have endeavoured to offer a fully world-wide survey accessible to students, historians, collectors, and the general reader, based on a firm understanding of the technical basis of the subject. At the same time as the work offers a synthesis of current knowledge of the subject, it also incorporates the results of some fundamental, new and original research.
Starting from first principles, this book introduces the closely related phenomena of Bose condensation and Cooper pairing, in which a very large number of single particles or pairs of particles are forced to behave in exactly the same way, and explores their consequences in condensed matter systems. Eschewing advanced formal methods, the author uses simple concepts and arguments to account for the various qualitatively new phenomena which occur in Bose-condensed and Cooper-paired systems, including but not limited to the spectacular macroscopic phenomena of superconductivity and superfluidity. The physical systems discussed include liquid 4-He, the BEC alkali gases, 'classical' superconductors, superfluid 3-He, 'exotic' superconductors and the recently stabilized Fermi alkali gases. The book should be accessible to beginning graduate students in physics or advanced undergraduates.
Over the past decade, advances in the field of close-range photogrammetry have been rapid and the era of digital photogrammetry is well on its way. This book provides a complete account of the subject with contributions from international experts.;The methodology, algorithms, techniques and equipment necessary to achieve real-time digital photogrammetric solutions are presented, together with contemporary aspects of close-range photogrammetry. Advances in the theory are presented as are a range of important applications of photogrammetry which illustrate the flexibility and comprehensive nature of these techniques of three-dimensional measurement.
The global loss of biodiversity is occurring at an unprecedented pace. Despite the considerable effort devoted to conservation science and management, we still lack even the most basic data on the distribution and density of the majority of plant and animal species, which in turn hampers our efforts to study changes over time. In addition, we often lack behavioural data from the very animals most influenced by environmental changes; this is largely due to the financial and logistical limitations associated with gathering scientific data on species that are cryptic, widely distributed, range over large areas, or negatively influenced by human presence. To overcome these limitations, conservationists are increasingly employing technology to facilitate such data collection. Innovative solutions have been driven by dramatic advances in the conservation-technology interface. The use of camera traps, acoustic sensors, satellite data, drones, and computer algorithms to analyse the large datasets collected are all becoming increasingly widespread. Although specialist books are available on some of these individual technologies, this is the first comprehensive text to describe the breadth of available technology for conservation and to evaluate its varied applications, bringing together a team of international experts using a diverse range of approaches. Conservation Technology is suitable for graduate level students, professional researchers, practitioners and field managers in the fields of ecology and conservation biology.
Volume 26 Reviews In Computational Chemistry Kenny B. Lipkowitz and Thomas R. Cundari Donald B. Boyd, Editor Emeritus This book series contains pedagogically driven reviews of computational methods for the novice molecular modeler as well as for the expert computational scientist. Topics covered in this volume include computational methods needed to compute interactions accurately, quantum mechanical methods used for computing weakly bound clusters, computing excited state properties with time-dependent density functional theory, and methods for computing quantum phase transitions. Also covered are real-space and multi-grid methods, hybrid methods for atomic level simulations spanning multiple time scales and multiple length scales, techniques used for extending time scales in atomic level simulations, and strategies for simulating ionic liquids. From Reviews Of The Series "Reviews in Computational Chemistry remains the most valuable
reference to methods and techniques in computational
chemistry." "One cannot generally do better than to try to find an
appropriate article in the highly successful Reviews in
Computational Chemistry. The basic philosophy of the editors seems
to be to help the authors produce chapters that are complete,
accurate, clear, and accessible to experimentalists (in particular)
and other nonspecialists (in general)."
Experiments, surveys, measurements, and observations all generate data. These data can provide useful insights for solving problems, guiding decisions, and formulating strategy. Progressing from relatively unprocessed data to insight, and doing so efficiently, reliably, and confidently, does not come easily, and yet gaining insights from data is a fundamental skill for science as well as many other fields and often overlooked in most textbooks of statistics and data analysis. This accessible and engaging book provides readers with the knowledge, experience, and confidence to work with data and unlock essential information (insights) from data summaries and visualisations. Based on a proven and successful undergraduate course structure, it charts the journey from initial question, through data preparation, import, cleaning, tidying, checking, double-checking, manipulation, and final visualization. These basic skills are sufficient to gain useful insights from data without the need for any statistics; there is enough to learn about even before delving into that world! The book focuses on gaining insights from data via visualisations and summaries. The journey from raw data to insights is clearly illustrated by means of a comprehensive Workflow Demonstration in the book featuring data collected in a real-life study and applicable to many types of question, study, and data. Along the way, readers discover how to efficiently and intuitively use R, RStudio, and tidyverse software, learning from the detailed descriptions of each step in the instructional journey to progress from the raw data to creating elegant and informative visualisations that reveal answers to the initial questions posed. There are an additional three demonstrations online! Insights from Data with R is suitable for undergraduate students and their instructors in the life and environmental sciences seeking to harness the power of R, RStudio, and tidyverse software to master the valuable and prerequisite skills of working with and gaining insights from data.
The modern ecologist usually works in both the field and laboratory, uses statistics and computers, and often works with ecological concepts that are model-based, if not model-driven. How do we make the field and laboratory coherent? How do we link models and data? How do we use statistics to help experimentation? How do we integrate modeling and statistics? How do we confront multiple hypotheses with data and assign degrees of belief to different hypotheses? How do we deal with time series (in which data are linked from one measurement to the next) or put multiple sources of data into one inferential framework? These are the kinds of questions asked and answered by "The Ecological Detective." Ray Hilborn and Marc Mangel investigate ecological data much as a detective would investigate a crime scene by trying different hypotheses until a coherent picture emerges. The book is not a set of pat statistical procedures but rather an approach. The Ecological Detective makes liberal use of computer programming for the generation of hypotheses, exploration of data, and the comparison of different models. The authors' attitude is one of exploration, both statistical and graphical. The background required is minimal, so that students with an undergraduate course in statistics and ecology can profitably add this work to their tool-kit for solving ecological problems.
This text provides the reader with a comprehensive understanding of the key ideas behind the physics of particle accelerators. Supported by a clear mathematical treatment and a range of calculations which develop a genuine feeling for the subject, it is a thorough introduction to the many aspects of accelerator physics.
The present biodiversity crisis is rife with opportunities to make important conservation decisions; however, the misuse or misapplication of the methods and techniques of animal ecology can have serious consequences for the survival of species. Still, there have been relatively few critical reviews of methodology in the field. This book provides an analysis of some of the most frequently used research techniques in animal ecology, identifying their limitations and misuses, as well as possible solutions to avoid such pitfalls. In the process, contributors to this volume present new perspectives on the collection, analysis, and interpretation of data. "Research Techniques in Animal Ecology" is an overarching account of central theoretical and methodological controversies in the field, rather than a handbook on the minutiae of techniques. The editors have forged comprehensive presentations of key topics in animal ecology, such as territory and home range estimates, habitation evaluation, population viability analysis, GIS mapping, and measuring the dynamics of societies. Striking a careful balance, each chapter begins by assessing the shortcomings and misapplications of the techniques in question, followed by a thorough review of the current literature, and concluding with possible solutions and suggested guidelines for more robust investigations.
"BioCoder" is a quarterly newsletter for DIYbio, synthetic bio, and anything related. You ll discover: Articles about interesting projects and experiments, such as the glowing plantArticles about tools, both those you buy and those you buildVisits to DIYbio laboratoriesProfiles of key people in the communityAnnouncements of events and other items of interestSafety pointers and tips about good laboratory practiceAnything that s interesting or useful: you tell us!And "BioCoder" is free (for the time being), unless you want a dead-tree version. We d like "BioCoder" to become self supporting (maybe even profitable), but we ll worry about that after we ve got a few issues under our belt.If you d like to contribute, send email to [email protected]. Tell us what you d like to do, and we ll get you started."
The Fundamentals of Biomedical Science series has been written to reflect the challenges of practicing biomedical scientists today. It draws together essential basic science, with insights into laboratory practice, to show how an understanding of the biology of disease is linked to analytical approaches that lead to diagnosis. The series reviews the full range of disciplines to which a biomedical scientist may be exposed - from microbiology, to cytopathology, to transfusion science. The third edition of Biomedical Science Practice gives a comprehensive overview of key laboratory techniques and professional practial skills, with which students will need to be familiar to be successful in a professional biomedical enviroment.The text discusses a broad range of professional skills and concepts, such as health and safety considerations, personal development, and communication and confidentiality. The text also explores key experimental and analytical approaches which form the basis of the investigation and diagnosis of clinical conditions. Each chapter is supported with engaging clinical case studies, written to emphasize the link between theory and practice, and a set of end-of-chapter questions, which encourages students to test their knowledge and stretch their understanding. The third edition is available for students and institutions to purchase in a variety of formats and is supported by online resources. The e-book offers a mobile experience and convenient access along with functionality tools, navigation features and links that offer extra learning support: www.oxfordtextbooks.co.uk/ebooks Online student resources supporting the book include: Answers to case study and self-check questions Multiple choice questions An interactive Digital Microscope, encouraging the exploration of tissue samples Video podcasts including interviews with practicing biomedical scientists, and 'in the lab' footage showing biomedical science in practice Online lecturer resources supporting the book include: Figures from the book, available to download
BioCoder is a quarterly newsletter for DIYbio, synthetic bio, and anything related. You'll discover: Articles about interesting projects and experiments, such as the glowing plant Articles about tools, both those you buy and those you build Visits to DIYbio laboratories Profiles of key people in the community Announcements of events and other items of interest Safety pointers and tips about good laboratory practice Anything that's interesting or useful: you tell us! And BioCoder is free (for the time being), unless you want a dead-tree version. We'd like BioCoder to become self supporting (maybe even profitable), but we'll worry about that after we've got a few issues under our belt.
Specifically intended for lab-based biomedical researchers, this practical guide shows how to design experiments that are reproducible, with low bias, high precision, and widely applicable results. With specific examples from research using both cell cultures and model organisms, it explores key ideas in experimental design, assesses common designs, and shows how to plan a successful experiment. It demonstrates how to control biological and technical factors that can introduce bias or add noise, and covers rarely discussed topics such as graphical data exploration, choosing outcome variables, data quality control checks, and data pre-processing. It also shows how to use R for analysis, and is designed for those with no prior experience. An accompanying website (https://stanlazic.github.io/EDLB.html) includes all R code, data sets, and the labstats R package. This is an ideal guide for anyone conducting lab-based biological research, from students to principle investigators working in either academia or industry.
* Internet exercises available on the Web.
The market leader for the full-year organic laboratory, this manual derives many experiments and procedures from the classic Feiser lab text, giving it an unsurpassed reputation for solid, authoritative content. The book includes new experiments that stress greener chemistry, updated NMR spectra, and a Premium Website that includes glassware-specific videos with pre-lab exercises. Offering a flexible mix of macroscale and microscale options for most experiments, this proven manual allows users to save on the purchase and disposal of expensive, sometimes hazardous organic chemicals. Macroscale versions can be used for less costly experiments, giving readers experience working with conventionally sized glassware.
Specifically intended for lab-based biomedical researchers, this practical guide shows how to design experiments that are reproducible, with low bias, high precision, and widely applicable results. With specific examples from research using both cell cultures and model organisms, it explores key ideas in experimental design, assesses common designs, and shows how to plan a successful experiment. It demonstrates how to control biological and technical factors that can introduce bias or add noise, and covers rarely discussed topics such as graphical data exploration, choosing outcome variables, data quality control checks, and data pre-processing. It also shows how to use R for analysis, and is designed for those with no prior experience. An accompanying website (https://stanlazic.github.io/EDLB.html) includes all R code, data sets, and the labstats R package. This is an ideal guide for anyone conducting lab-based biological research, from students to principle investigators working in either academia or industry.
This book is about the statistical principles behind the design of effective experiments and focuses on the practical needs of applied statisticians and experimenters engaged in design, implementation and analysis. Emphasising the logical principles of statistical design, rather than mathematical calculation, the authors demonstrate how all available information can be used to extract the clearest answers to many questions. The principles are illustrated with a wide range of examples drawn from real experiments in medicine, industry, agriculture and many experimental disciplines. Numerous exercises are given to help the reader practise techniques and to appreciate the difference that good design can make to an experimental research project. Based on Roger Mead's excellent Design of Experiments, this new edition is thoroughly revised and updated to include modern methods relevant to applications in industry, engineering and modern biology. It also contains seven new chapters on contemporary topics, including restricted randomisation and fractional replication.
This DK children's book aged 11-14 is brimming with exciting,
educational activities and projects that focus on electronics and
technology.
The Oxford Handbook of the History of Physics brings together cutting-edge writing by more than twenty leading authorities on the history of physics from the seventeenth century to the present day. By presenting a wide diversity of studies in a single volume, it provides authoritative introductions to scholarly contributions that have tended to be dispersed in journals and books not easily accessible to the general reader. While the core thread remains the theories and experimental practices of physics, the Handbook contains chapters on other dimensions that have their place in any rounded history. These include the role of lecturing and textbooks in the communication of knowledge, the contribution of instrument-makers and instrument-making companies in providing for the needs of both research and lecture demonstrations, and the growing importance of the many interfaces between academic physics, industry, and the military.
All you need to explore science is a kitchen, this book - and a dash of curiosity The Kitchen Science Cookbook is a beautifully crafted book with a unique twist: each recipe is a science experiment that you can do at home, using the everyday ingredients you'll find in your kitchen. No need to be a science expert -- these easy-to-follow recipes make mind-blowing science experiments fun for everyone. From sticky ice and raising raisins to balloon science and scrumptious slime, nanotechnologist and educator Michelle Dickinson shows that we can all be scientists, no matter how young or old. With recipes tested by hundreds of enthusiastic families around the world, The Kitchen Science Cookbook is the perfect gift for all ages. |
![]() ![]() You may like...
Mixed Intelligent Systems - Developing…
Tadeusz A. Grzeszczyk
Hardcover
R1,904
Discovery Miles 19 040
Advanced Introduction to Megaprojects
Nathalie Drouin, Rodney Turner
Hardcover
R2,894
Discovery Miles 28 940
Handbook of Research on Advanced…
Madhumangal Pal, Sovan Samanta, …
Hardcover
R7,278
Discovery Miles 72 780
Creating an Effective Public Sector
Mike Bourne, Pippa Bourne
Hardcover
R4,481
Discovery Miles 44 810
|