![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Science: general issues > Scientific equipment & techniques, laboratory equipment > General
For students, DIY hobbyists, and science buffs, who can no longer get real chemistry sets, this one-of-a-kind guide explains how to set up and use a home chemistry lab, with step-by-step instructions for conducting experiments in basic chemistry - not just to make pretty colors and stinky smells, but to learn how to do real lab work: purify alcohol by distillation; produce hydrogen and oxygen gas by electrolysis; smelt metallic copper from copper ore you make yourself; analyze the makeup of seawater, bone, and other common substances; synthesize oil of wintergreen from aspirin and rayon fiber from paper; perform forensics tests for fingerprints, blood, drugs, and poisons; and much more.From the 1930s through the 1970s, chemistry sets were among the most popular Christmas gifts, selling in the millions. But two decades ago, real chemistry sets began to disappear as manufacturers and retailers became concerned about liability. "The Illustrated Guide to Home Chemistry Experiments" steps up to the plate with lessons on how to equip your home chemistry lab, master laboratory skills, and work safely in your lab.The bulk of this book consists of 17 hands-on chapters that include multiple laboratory sessions on the following topics: Separating Mixtures; Solubility and Solutions; Colligative Properties of Solutions; Introduction to Chemical Reactions and Stoichiometry; Reduction-Oxidation (Redox) Reactions; Acid-Base Chemistry; Chemical Kinetics; Chemical Equilibrium and Le Chatelier's Principle; Gas Chemistry; Thermochemistry and Calorimetry; Electrochemistry; Photochemistry; Colloids and Suspensions; Qualitative Analysis; Quantitative Analysis; Synthesis of Useful Compounds; and Forensic Chemistry. With plenty of full-color illustrations and photos, Illustrated Guide to Home Chemistry Experiments offers introductory level sessions suitable for a middle school or first-year high school chemistry laboratory course, and more advanced sessions suitable for students who intend to take the College Board Advanced Placement (AP) Chemistry exam. A student who completes all of the laboratories in this book will have done the equivalent of two full years of high school chemistry lab work or a first-year college general chemistry laboratory course. This hands-on introduction to real chemistry - using real equipment, real chemicals, and real quantitative experiments - is ideal for the many thousands of young people and adults who want to experience the magic of chemistry.
The ultimate DIY project guide for techie dads raising kids in
their own geeky image, in the spirit of "The Dangerous Book for
Boys"
The Oxford Handbook of the History of Physics brings together cutting-edge writing by more than twenty leading authorities on the history of physics from the seventeenth century to the present day. By presenting a wide diversity of studies in a single volume, it provides authoritative introductions to scholarly contributions that have tended to be dispersed in journals and books not easily accessible to the general reader. While the core thread remains the theories and experimental practices of physics, the Handbook contains chapters on other dimensions that have their place in any rounded history. These include the role of lecturing and textbooks in the communication of knowledge, the contribution of instrument-makers and instrument-making companies in providing for the needs of both research and lecture demonstrations, and the growing importance of the many interfaces between academic physics, industry, and the military.
A revealing and provocative look at the current state of global science We take the advance of science as given. But how does science really work? Is it truly as healthy as we tend to think? How does the system itself shape what scientists do? The Secret Life of Science takes a clear-eyed and provocative look at the current state of global science, shedding light on a cutthroat and tightly tensioned enterprise that even scientists themselves often don't fully understand. The Secret Life of Science is a dispatch from the front lines of modern science. It paints a startling picture of a complex scientific ecosystem that has become the most competitive free-market environment on the planet. It reveals how big this ecosystem really is, what motivates its participants, and who reaps the rewards. Are there too few scientists in the world or too many? Are some fields expanding at the expense of others? What science is shared or published, and who determines what the public gets to hear about? What is the future of science? Answering these and other questions, this controversial book explains why globalization is not necessarily good for science, nor is the continued growth in the number of scientists. It portrays a scientific community engaged in a race for limited resources that determines whether careers are lost or won, whose research visions become the mainstream, and whose vested interests end up in control. The Secret Life of Science explains why this hypercompetitive environment is stifling the diversity of research and the resiliency of science itself, and why new ideas are needed to ensure that the scientific enterprise remains healthy and vibrant.
Most lab manuals assume a high level of knowledge among biochemistry students, as well as a large amount of experience combining knowledge from separate scientific disciplines. Biochemistry in the Lab: A Manual for Undergraduates expects little more than basic chemistry. It explains procedures clearly, as well as giving a clear explanation of the theoretical reason for those steps. Key Features: Presents a comprehensive approach to modern biochemistry laboratory teaching, together with a complete experimental experience Includes chemical biology as its foundation, teaching readers experimental methods specific to the field Provides instructor experiments that are easy to prepare and execute, at comparatively low cost Supersedes existing, older texts with information that is adjusted to modern experimental biochemistry Is written by an expert in the field This textbook presents a foundational approach to modern biochemistry laboratory teaching together with a complete experimental experience, from protein purification and characterization to advanced analytical techniques. It has modules to help instructors present the techniques used in a time critical manner, as well as several modules to study protein chemistry, including gel techniques, enzymology, crystal growth, unfolding studies, and fluorescence. It proceeds from the simplest and most important techniques to the most difficult and specialized ones. It offers instructors experiments that are easy to prepare and execute, at comparatively low cost.
This concise introductory guide explains the values that should inform the responsible conduct of scientific research in today's global setting. Featuring accessible discussions and ample real-world scenarios, Doing Global Science covers proper conduct, fraud and bias, the researcher's responsibilities to society, communication with the public, and much more. The book places special emphasis on the international and highly networked environment in which modern research is done, presenting science as an enterprise that is being transformed by globalization, interdisciplinary research projects, team science, and information technologies. Accessibly written by an InterAcademy Partnership committee comprised of leading scientists from around the world, Doing Global Science is required reading for students, practitioners, and anyone concerned about the responsible conduct of science today. * Provides practical guidance and instructions for doing scientific research in today's global setting * Covers everything from responsible conduct to communication with the public * Features numerous real-world scenarios drawn from an array of disciplines and national contexts * Focuses on issues commonly encountered in international collaborations * Written by a panel of leading experts from around the world * An essential guide for practicing scientists and anyone concerned about fostering research integrity
Succeed in biology with LABORATORY MANUAL FOR NON-MAJORS BIOLOGY! Through hands-on lab experience, this biology laboratory manual reinforces biology concepts to help you get a better grade. Exercises, pre-lab questions, and post-lab questions enhance your understanding and make lab assignments easy to complete and easy to comprehend.
VOLUME 25 Reviews in Computational Chemistry Kenny B. Lipkowitz and Thomas R. Cundari This Volume, Like Those Prior To It, Features Pedagogically Driven Reviews By Experts In Various Fields Of Computational Chemistry. Volume 25 Contains: Eight Chapters Covering The Glass Transition In Polymer Melts, Atomistic Modeling Of Friction, The Computation Of Free Volume, Structural Order And Entropy Of Liquids And Glasses, The Reactivity Of Materials At Extreme Conditions, Magnetic Properties Of Transition Metal Clusters, Multiconfigurational Quantum Methods For The Treatment Of Heavy Metals, Recursive Solutions To Large Eigenvalue Problems, And The Development And Uses Of Artificial Intelligence In Chemistry. From Reviews of the Series "Reviews in Computational Chemistry remains the most valuable
reference to methods and techniques in computational
chemistry." "One cannot generally do better than to try to find an
appropriate article in the highly successful Reviews in
Computational Chemistry. The basic philosophy of the editors seems
to be to help the authors produce chapters that are complete,
accurate, clear, and accessible to experimentalists (in particular)
and other nonspecialists (in general)."
In 1876 the South Kensington Museum held a major international exhibition of scientific instruments and equipment, both historical and contemporary. Many of the items were retained and eventually formed the basis of important collections now held at the Science Museum, London. This is the 1877 third edition of the exhibition catalogue, which was expanded to include a 'large number of objects' received since the publication of the second edition, and which also included corrections in order to 'afford a complete record of the collection for future reference'. In two volumes and twenty sections comprising over 4,500 entries, the catalogue lists a huge variety of items, ranging from slide rules and telescopes to lighthouse parts and medical equipment. It gives detailed explanations of how they were used, and notes of their ownership and provenance, while the opening pages comprehensively record the contributing individuals and institutions in Britain, Europe and America.
In 1876 the South Kensington Museum held a major international exhibition of scientific instruments and equipment, both historical and contemporary. Many of the items were retained and eventually formed the basis of important collections now held at the Science Museum, London. This is the 1877 third edition of the exhibition catalogue, which was expanded to include a 'large number of objects' received since the publication of the second edition, and which also included corrections in order to 'afford a complete record of the collection for future reference'. In two volumes and twenty sections comprising over 4,500 entries, the catalogue lists a huge variety of items, ranging from slide rules and telescopes to lighthouse parts and medical equipment. It gives detailed explanations of how they were used, and notes of their ownership and provenance, while the opening pages comprehensively record the contributing individuals and institutions in Britain, Europe and America.
Research powers innovation and technoscientific advance, but it is due for a rethink, one consistent with its deeply holistic nature, requiring deeply human nurturing. Research is a deeply human endeavor that must be nurtured to achieve its full potential. As with tending a garden, care must be taken to organize, plant, feed, and weed-and the manner in which this nurturing is done must be consistent with the nature of what is being nurtured. In The Genesis of Technoscientific Revolutions, Venkatesh Narayanamurti and Jeffrey Tsao propose a new and holistic system, a rethinking of the nature and nurturing of research. They share lessons from their vast research experience in the physical sciences and engineering, as well as from perspectives drawn from the history and philosophy of science and technology, research policy and management, and the evolutionary biological, complexity, physical, and economic sciences. Narayanamurti and Tsao argue that research is a recursive, reciprocal process at many levels: between science and technology; between questions and answer finding; and between the consolidation and challenging of conventional wisdom. These fundamental aspects of the nature of research should be reflected in how it is nurtured. To that end, Narayanamurti and Tsao propose aligning organization, funding, and governance with research; embracing a culture of holistic technoscientific exploration; and instructing people with care and accountability.
Computational Methods in Physics, Chemistry and Biology offers an accessible introduction to key computational techniques used within science, including quantum mechanics, dynamics, evolutionary methods and molecular dynamics. Assuming only a limited background in computational methods, this book provides the reader with a series of comprehensive examples, problems and practical-based tasks from the basics through to more complex ideas and techniques. Beginning with an introduction to a numerical solution of Schrödinger's Equation the text moves on to discuss perturbation theory, variational calculations, diffusion, dynamics, Monte Carlo simulations and genetic algorithms. Aimed at those new to the field, the book will enable the reader to develop and implement computational methods for the solutions of a range of problems in science. Features:
Scientific techniques developed in materials science offer
invaluable information to archaeology, art history, and
conservation. A rapidly growing number of innovative methods, as
well as many established techniques, are constantly being improved
and optimized for the analysis of cultural heritage materials. The
result is that on the one hand more complex problems and questions
can be confronted, but on the other hand the required level of
technical competence is widening the existing cultural gap between
scientists and end users, such as archaeologists, museum curators,
art historians, and many managers of cultural heritage who have a
purely humanistic background.
Raymond E. Barrett's Build-It-Yourself Science Laboratory is a classic book that took on an audacious task: to show young readers in the 1960s how to build a complete working science lab for chemistry, biology, and physics--and how to perform experiments with those tools. The experiments in this book are fearless and bold by today's standards--any number of the experiments might never be mentioned in a modern book for young readers! Yet, many from previous generations fondly remember how we as a society used to embrace scientific learning. This new version of Barrett's book has been updated for today's world with annotations and updates from Windell Oskay of Evil Mad Scientist Laboratories, including extensive notes about modern safety practices, suggestions on where to find the parts you need, and tips for building upon Barrett's ideas with modern technology. With this book, you'll be ready to take on your own scientific explorations at school, work, or home.
This new book aims to guide both the experimentalist and theoretician through their compulsory laboratory courses forming part of an undergraduate physics degree. The rationale behind this book is to show students and interested readers the value and beauty within a carefully planned and executed experiment, and to help them to develop the skills to carry out experiments themselves.
A bestseller for nearly 25 years, Analysis of Messy Data, Volume 1: Designed Experiments helps applied statisticians and researchers analyze the kinds of data sets encountered in the real world. Written by two long-time researchers and professors, this second edition has been fully updated to reflect the many developments that have occurred since the original publication. New to the Second Edition Several modern suggestions for multiple comparison procedures Additional examples of split-plot designs and repeated measures designs The use of SAS-GLM to analyze an effects model The use of SAS-MIXED to analyze data in random effects experiments, mixed model experiments, and repeated measures experiments The book explores various techniques for multiple comparison procedures, random effects models, mixed models, split-plot experiments, and repeated measures designs. The authors implement the techniques using several statistical software packages and emphasize the distinction between design structure and the structure of treatments. They introduce each topic with examples, follow up with a theoretical discussion, and conclude with a case study. Bringing a classic work up to date, this edition will continue to show readers how to effectively analyze real-world, nonstandard data sets.
This book introduces the fundamentals of biobanking and guides through the practical planning thereof, with a special focus on the situation in low- and middle-income countries. On the example of the setup of a Ukrainian biobank the book discusses the main steps and aspects of successful biorepository implementation and management. Topics covered include collection, storage and shipping of samples, establishment of an IT system, development of a sustainability plan, and project and risk management. Furthermore, the importance of the formation of international biobanking societies such as the Ukraine Association of Biobanks is highlighted, and their main objectives and tasks are discussed.The book addresses life science and business professionals as well as national authorities who are interested in biobanking in general and in setting up a biobank in particular.
A sweeping tour of the infrared universe as seen through the eyes of NASA's Spitzer Space Telescope Astronomers have been studying the heavens for thousands of years, but until recently much of the cosmos has been invisible to the human eye. Launched in 2003, the Spitzer Space Telescope has brought the infrared universe into focus as never before. Michael Werner and Peter Eisenhardt are among the scientists who worked for decades to bring this historic mission to life. Here is their inside story of how Spitzer continues to carry out cutting-edge infrared astronomy to help answer fundamental questions that have intrigued humankind since time immemorial: Where did we come from? How did the universe evolve? Are we alone? In this panoramic book, Werner and Eisenhardt take readers on a breathtaking guided tour of the cosmos in the infrared, beginning in our solar system and venturing ever outward toward the distant origins of the expanding universe. They explain how astronomers use the infrared to observe celestial bodies that are too cold or too far away for their light to be seen by the eye, to conduct deep surveys of galaxies as they appeared at the dawn of time, and to peer through dense cosmic clouds that obscure major events in the life cycles of planets, stars, and galaxies. Featuring many of Spitzer's spectacular images, More Things in the Heavens provides a thrilling look at how infrared astronomy is aiding the search for exoplanets and extraterrestrial life, and transforming our understanding of the history and evolution of our universe.
Radioisotopes are invaluable tools for research in the biosciences. They provide unrivalled sensitivity for the detection and identification of biological molecules, facilitating for example drug discovery and human genetics.The book helps the research scientist to understand what is involved in the use of radioactive compounds and provides protocols for their use. Advice on legislation, guidance on safe handling and detailed recipes are provided.
The first part of this book describes the development of the trade in scientific instruments in Elizabethan London. In the second part, the author describes in detail the provenance and context of all the existing scientific instruments from this period. Highly illustrated throughout this book is a fascinating and scholarly study of a neglected period.
This book explicates the optical controls of antiferromagnetic spins by intense terahertz (THz) electromagnetic waves. The book comprises two key components: (1) the experimental demonstration of the enhancement of a THz magnetic field using a split-ring resonator (SRR) and (2) the control of the direction of magnetization by using the enhanced THz magnetic field to break the symmetry of optically-induced phase transition. These make up the first step leading to future spintronics devices. In the beginning of the book, the author reviews the basics of the ultrafast laser and nonlinear optical techniques as well as the previously achieved experiments to control spin dynamics by THz magnetic fields. In this context, a new experimental protocol is described, in which electron spins in a ferromagnetic material are redirected at the unprecedented level in cooperation with the enhanced THz magnetic field. Subsequently, the author demonstrates that the THz magnetic field is significantly amplified as a nearfield around the SRR structured metamaterial, which is implemented by measuring spin precession in a solid. At the end, the author presents the key experiment in which the amplified THz magnetic nearfield is applied to the weak ferromagnet ErFeO3 along with the femtosecond near-infrared pulse, demonstrating the successful control of symmetry breaking of the spin system due to coherent control of the optically-induced spin reorientation phase transition pathways. The comprehensive introductory review in this book allows readers to overview state-of-the-art terahertz spectroscopic techniques. In addition, the skillful description of the experiments is highly informative for readers in ultrafast magnonics, ultrafast optics, terahertz technology and plasmonic science.
This is a fundamental reference work for any scientist contemplating using AI for data analysis.
This book contains up-to-date methods for all aspects of breeding and studying mice as a model for the way that genes work to control development, physiology and behaviour. The mouse has recently become the model organism for human genetics. The chapters are written by experts in the field and aimed both at an audience of scientists new to the field, and those who want an overview of the latest techniques.
It has been recognised for many years that power ultrasound has great potential for uses in a wide variety of processes in the chemical and allied industries. Reported applications include cleaning, sterilisation, flotation, drying, degassing, defoaming, soldering, plastic welding, drilling, filtration, homogenisation, emulsification, dissolution, deaggregation of powder, biological cell disruption, extraction, crystallisation and, more recently, as a stimulus for chemical reactions. With the increasing use of power ultrasound in chemistry comes the need for specialist text books covering this emerging discipline. This book is suitable for chemists and chemical engineers at all levels who wish to gain a rapid insight into what is becoming a standard method in the chemical laboratory. It is designed to answer the following questions: What is sonochemistry? Why is it important? What systems are affected by sonochemistry? What are the major applications of this technique? What types of ultrasonic equipment are available? How do the different types of equipment compare? How is the equipment best configured for chemical applications? What parameters can be changed to optimise sonochemical results? What equipment is available for the scale-up of sonochemistry?
X-ray crystallography is the major method of determining biological structures yet the procedures involved in obtaining the required crystals are still seen as something of a black art by many molecular biologists. As with the previous edition this book will dispel this idea by providing a detailed and rational guide to obtaining crystals or proteins and nucleic acids for diffraction studies. |
You may like...
Machine Learning, Big Data, and IoT for…
Pardeep Kumar, Yugal Kumar, …
Paperback
R2,657
Discovery Miles 26 570
Genetics and Mental Retardation…
Elisabeth M. Dykens, Robert M. Hodapp, …
Paperback
The Use of Tools by Human and Non-human…
A. Berthelet, J. Chavaillon
Hardcover
R4,495
Discovery Miles 44 950
Maps of Meaning - The Architecture Of…
Jordan B. Peterson
Paperback
(3)
Rule Based Systems for Big Data - A…
Han Liu, Alexander Gegov, …
Hardcover
R3,172
Discovery Miles 31 720
Researching Literacy Lives - Building…
Teresa Cremin, Marilyn Mottram, …
Paperback
R1,488
Discovery Miles 14 880
|