![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Science: general issues > Scientific equipment & techniques, laboratory equipment > General
A unique introduction to the design, analysis, and presentation of scientific projects, this is an essential textbook for undergraduate majors in science and mathematics. The textbook gives an overview of the main methods used in scientific research, including hypothesis testing, the measurement of functional relationships, and observational research. It describes important features of experimental design, such as the control of errors, instrument calibration, data analysis, laboratory safety, and the treatment of human subjects. Important concepts in statistics are discussed, focusing on standard error, the meaning of p values, and use of elementary statistical tests. The textbook introduces some of the main ideas in mathematical modeling, including order-of-magnitude analysis, function fitting, Fourier transforms, recursion relations, and difference approximations to differential equations. It also provides guidelines on accessing scientific literature, and preparing scientific papers and presentations. An extensive instructor's manual containing sample lessons and student papers is available at www.cambridge.org/Marder.
This dictionary is the first to provide a comprehensive explanation of the bewildering array of acronyms and technical terms which have crept into the NMR literature in recent years. Aimed at chemists and biochemists who have only an elementary knowledge of NMR, it provides a clear description of the concepts and basic principles involved, including developments in two-dimensional NMR methods in liquids. Mathematical descriptions are used where appropriate, however the level of mathematical competence required is low, and the more complex aspects are fully explained in the text. Each term is explained in full, extensive cross-references are included, and suggestions for further reading are included. The new and revised paperback edition of this well-received dictionary includes many new, up-to-date entries - for example, on three- and four-dimensional NMR.
This book is designed to supply research workers in biochemistry and related fields with factual information about the compounds, reagents, and techniques they use most frequently in the laboratory. The material has been selected by practising biochemists and, in this third edition, a wide range of data is clearly displayed in an easily accessible form. Much has been deleted from earlier editions to be replaced by new material of current importance to biochemistry and molecular biology. Functional grouping of compounds has been emphasized to enable users of this book to see what compounds are available as well as find data on specific examples. Now available in paperback, this book provides a clear presentation of the type of information frequently needed in experimental work and is an invaluable laboratory companion for workers in any aspect of biochemistry. `Highly recommended as a standard reference source in biochemical research.' Journal of Histochemistry and Cytochemistry
If you're taking a basic course in classical physics, or have a healthy curiosity for the way things work in the physical world, the Illustrated Guide to Home Physics Experiments provides an ideal hands-on introduction to physics lab techniques and data analysis. With this book and a few simple (and inexpensive) tools and materials, you'll learn to conduct experiments that answer questions about our world, make demonstrations to show off physical principles, and do theoretical lab work to discover how the world works. Perfect for do-it-yourselfers, home-schooled high school students, and college students, this book will help you: Learn everything from the basics of motion all the way to particle physics - including energy, thermodynamics, magnetic fields, optics, and much more Take careful measurements of physical phenomena and conduct data analysis Build and perform physics demonstrations that are fascinating and fun Construct computer models to represent aspects of the physical world It's easy to get started. You can build most of the experiments and demonstrations in this book with ordinary household tools, using materials that you can scrounge, borrow, or get free. The most important thing is your willingness to enter the door of discovery that awaits you. The Illustrated Guide to Home Physics Experiments is your key.
"The Ultimate Book of Saturday Science" is Neil Downie's biggest and most astounding compendium yet of science experiments you can do in your own kitchen or backyard using common household items. It may be the only book that encourages hands-on science learning through the use of high-velocity, air-driven carrots. Downie, the undisputed maestro of Saturday science, here reveals important principles in physics, engineering, and chemistry through such marvels as the Helevator--a contraption that's half helicopter, half elevator--and the Rocket Railroad, which pumps propellant up from its own track. The Riddle of the Sands demonstrates why some granular materials form steep cones when poured while others collapse in an avalanche. The Sunbeam Exploder creates a combustible delivery system out of sunlight, while the Red Hot Memory experiment shows you how to store data as heat. Want to learn to tell time using a knife and some butter? There's a whole section devoted to exotic clocks and oscillators that teaches you how. "The Ultimate Book of Saturday Science" features more than seventy fun and astonishing experiments that range in difficulty from simple to more challenging. All of them are original, and all are guaranteed to work. Downie provides instructions for each one and explains the underlying science, and also presents experimental variations that readers will want to try.
Designed with the non-specialist teacher in mind, the emphasis of this book is to provide them with the confidence, flair and enthusiasm to teach chemistry at KS3 or KS4. Provision of 80 experiments to inspire and engage the students, practical help with the experiments and health and safety guidance means the teacher has all the tools they might require when improving the teaching of chemistry. Originally developed as course material for the Royal Society of Chemistry (RSC) Chemistry for Non-Specialist course, organised in collaboration with the national network of Science Learning Centres (SLCs) and supported by an unrestricted educational grant from GlaxoSmithKline (GSK), the resources are tried and tested and known to be effective. The course book is accompanied by a CD-ROM and together they make a valuable addition to the educational resources and aids for non-specialist teachers teaching chemistry.
Team leaders should be full of ideas for new research projects and inspire a research group to achieve great results. This practical guide for team leaders, and those who aspire to become team leader, offers a unique approach to help readers develop research and become a more independent and productive investigator. Readers can learn how to recruit and develop talented team members, how to negotiate contracts and manage projects, and how to create wider visibility and publicity for their science. From human resources and project finances, legal affairs and knowledge transfer to public engagement and media performance, the book provides guidance to enhance skills and combine them with those of support staff on the road to success. With numerous valuable tips, real-life stories and practical exercises, this must-read guide provides everything needed to take responsibility for leading research teams. This title is available as Open Access via Cambridge Core.
Textbook of "in vivo" Imaging in Vertebrates. Editors. Vasilis Ntziachristos Department of Radiology, Harvard University HMS/MGH, Charlestown, USA Anne Leroy-Willig U2R2M, CNRS and Universite Paris-Sud, Orsay, France Bertrand Tavitian Unite d'Imagerie de l'Expression des Genes, INSERM, Orsay, Franc This book describes the new imaging techniques being developed to monitor physiological, cellular and subcellular function within living animals. This exciting field of imaging science brings together physics, chemistry, engineering, biology and medicine to yield powerful and versatile imaging approaches. By combining advanced non-invasive imaging technologies with new mechanisms for visualizing biochemical events and protein and gene function, non-invasive vertebrate imaging enables the in vivo study of biology and offers rapid routes from basic discovery to drug development and clinical application. Combined with the availability of an increasing number of animal models of human disease, and the ability to perform longitudinal studies of disease evolution and of the long-term effects of therapeutic procedures, this new technology offers the next generation of tools for biomedical research. Well illustrated, largely in colour, the book reviews the most common and technologically advanced methods for vertebrate imaging, presented in a clear, comprehensive format. The basic principles are described, followed by several examples of the use of imaging in the study of living multicellular organisms, concentrating on small animal models of human diseases. The book illustrates: - The types of information that can be obtained with modern in vivo imaging; -The substitution of imaging methods for more destructive histological techniques; - The advantages conferred by in vivo imaging in building a more accurate picture of the response of tissues to stimuli over time while significantly reducing the number of animals required for such studies. Part 1 describes current techniques in in vivo imaging, providing specialists and laboratory scientists from all disciplines with clear and helpful information regarding the tools available for their specific research field. Part 2 looks in more detail at imaging organ development and function, covering the brain, heart, lung and others. Part 3 describes the use of imaging to monitor various new types of therapy, following the reaction in an individual organism over time, e.g. after gene or cell therapy. Most chapters are written by teams of physicists and biologists, giving a balanced coherent description of each technique and its potential applications. The book is aimed at a broad audience conducting research in areas such as biochemistry, physiology, developmental biology, oncology and pharmacology. While written primarily for those already engaged in imaging studies, it will also be of interest to scientists from other disciplines looking for an entry point into the field of in vivo imaging in small animals.
This successful text provides students majoring in biochemistry, chemistry, biology, and related fields with a modern and complete experience in experimental biochemistry. Its unique two-part organization offers flexibility to accommodate various requirements of the course, and allows students to reference detailed theory sections for clarification during labs. Part I, Theory and Experimental Techniques, provides in-depth theoretical discussion organized around important techniques. A valuable reference for instructors and students, it's particularly useful to instructors who prefer to use their own customized experiments. Part II, Experiments, offers optimum flexibility through 15 tested experiments designed to accommodate the capabilities of laboratories and students at most four-year schools. Alternate methods are suggested and labs may be divided into manageable hour segments.
The first book to chronicle how innovation in laboratory designs for botanical research energized the emergence of physiological plant ecology as a vibrant subdiscipline  Laboratory innovation since the mid-twentieth century has powered advances in the study of plant adaptation, evolution, and ecosystem function. The phytotron, an integrated complex of controlled-environment greenhouse and laboratory spaces, invented by Frits W. Went in the 1950s, set off a worldwide laboratory movement and transformed the plant sciences. Sharon Kingsland explores this revolution through a comparative study of work in the United States, France, Australia, Israel, the USSR, and Hungary.  These advances in botanical research energized physiological plant ecology. Case studies explore the development of phytotron spinoffs such as mobile laboratories, rhizotrons, and ecotrons. Scientific problems include the significance of plant emissions of volatile organic compounds, symbiosis between plants and soil fungi, and the discovery of new pathways for photosynthesis as an adaptation to hot, dry climates. The advancement of knowledge through synthesis is a running theme: linking disciplines, combining laboratory and field research, and moving across ecological scales from leaf to ecosystem. The book also charts the history of modern scientific responses to the emerging crisis of food insecurity in the era of global warming.
A General History of Horology describes instruments used for the finding and measurement of time from Antiquity to the 21st century. In geographical scope it ranges from East Asia to the Americas. The instruments described are set in their technical and social contexts, and there is also discussion of the literature, the historiography and the collecting of the subject. The book features the use of case studies to represent larger topics that cannot be completely covered in a single book. The international body of authors have endeavoured to offer a fully world-wide survey accessible to students, historians, collectors, and the general reader, based on a firm understanding of the technical basis of the subject. At the same time as the work offers a synthesis of current knowledge of the subject, it also incorporates the results of some fundamental, new and original research.
Starting from first principles, this book introduces the closely related phenomena of Bose condensation and Cooper pairing, in which a very large number of single particles or pairs of particles are forced to behave in exactly the same way, and explores their consequences in condensed matter systems. Eschewing advanced formal methods, the author uses simple concepts and arguments to account for the various qualitatively new phenomena which occur in Bose-condensed and Cooper-paired systems, including but not limited to the spectacular macroscopic phenomena of superconductivity and superfluidity. The physical systems discussed include liquid 4-He, the BEC alkali gases, 'classical' superconductors, superfluid 3-He, 'exotic' superconductors and the recently stabilized Fermi alkali gases. The book should be accessible to beginning graduate students in physics or advanced undergraduates.
Automated instrumentation produces reams of data that need to be interpreted within a relatively short period of time. Statistics is a major tool in this important endeavor to conquer - and understand - numbers. In this important work, various techniques, perspectives, and applications are brought together so that readers can learn the basic concepts, recognize trends and connections, and clearly observe how the various equations are linked to decision making. There is in-depth coverage of elementary and moderately advanced statistics, numerical simulation and optimization, some programming, real-life industrial examples, and applications in the analytical lab under GMP. Statistical Methods in Analytical Chemistry also comes with a 3.5 floppy disk with 32 BASIC programs and over 30 sample data files. This book was written for those who already have some firsthand experience with numbers - be it in an analytical or other type of laboratory. The common ground covered in this book is the act of calibrating measuring equipment, collecting, and interpreting data. The examples were taken from a chemical/pharmaceutical environment, but only serve as convenient vehicles for the discussion of when to use which test, and how to make sense out of the results. While practical use of statistics is the major concern, it is put into perspective, and the reader is urged to use plausibility checks. Statistical Methods in Analytical Chemistry integrates PC computing power, testing programs, sample data files, algorithms instead of statistical tables, and analytical know-how in the context of a GMP/GLP-conscious industrial setting.
The global loss of biodiversity is occurring at an unprecedented pace. Despite the considerable effort devoted to conservation science and management, we still lack even the most basic data on the distribution and density of the majority of plant and animal species, which in turn hampers our efforts to study changes over time. In addition, we often lack behavioural data from the very animals most influenced by environmental changes; this is largely due to the financial and logistical limitations associated with gathering scientific data on species that are cryptic, widely distributed, range over large areas, or negatively influenced by human presence. To overcome these limitations, conservationists are increasingly employing technology to facilitate such data collection. Innovative solutions have been driven by dramatic advances in the conservation-technology interface. The use of camera traps, acoustic sensors, satellite data, drones, and computer algorithms to analyse the large datasets collected are all becoming increasingly widespread. Although specialist books are available on some of these individual technologies, this is the first comprehensive text to describe the breadth of available technology for conservation and to evaluate its varied applications, bringing together a team of international experts using a diverse range of approaches. Conservation Technology is suitable for graduate level students, professional researchers, practitioners and field managers in the fields of ecology and conservation biology.
Volume 26 Reviews In Computational Chemistry Kenny B. Lipkowitz and Thomas R. Cundari Donald B. Boyd, Editor Emeritus This book series contains pedagogically driven reviews of computational methods for the novice molecular modeler as well as for the expert computational scientist. Topics covered in this volume include computational methods needed to compute interactions accurately, quantum mechanical methods used for computing weakly bound clusters, computing excited state properties with time-dependent density functional theory, and methods for computing quantum phase transitions. Also covered are real-space and multi-grid methods, hybrid methods for atomic level simulations spanning multiple time scales and multiple length scales, techniques used for extending time scales in atomic level simulations, and strategies for simulating ionic liquids. From Reviews Of The Series "Reviews in Computational Chemistry remains the most valuable
reference to methods and techniques in computational
chemistry." "One cannot generally do better than to try to find an
appropriate article in the highly successful Reviews in
Computational Chemistry. The basic philosophy of the editors seems
to be to help the authors produce chapters that are complete,
accurate, clear, and accessible to experimentalists (in particular)
and other nonspecialists (in general)."
Demography is everywhere in our lives: from birth to death. Indeed, the universal currencies of survival, development, reproduction, and recruitment shape the performance of all species, from microbes to humans. The number of techniques for demographic data acquisition and analyses across the entire tree of life (microbes, fungi, plants, and animals) has drastically increased in recent decades. These developments have been partially facilitated by the advent of technologies such as GIS and drones, as well as analytical methods including Bayesian statistics and high-throughput molecular analyses. However, despite the universality of demography and the significant research potential that could emerge from unifying: (i) questions across taxa, (ii) data collection protocols, and (iii) analytical tools, demographic methods to date have remained taxonomically siloed and methodologically disintegrated. This is the first book to attempt a truly unified approach to demography and population ecology in order to address a wide range of questions in ecology, evolution, and conservation biology across the entire spectrum of life. This novel book provides the reader with the fundamentals of data collection, model construction, analyses, and interpretation across a wide repertoire of demographic techniques and protocols. It introduces the novice demographer to a broad range of demographic methods, including abundance-based models, life tables, matrix population models, integral projection models, integrated population models, individual based models, and more. Through the careful integration of data collection methods, analytical approaches, and applications, clearly guided throughout with fully reproducible R scripts, the book provides an up-to-date and authoritative overview of the most popular and effective demographic tools. Demographic Methods across the Tree of Life is aimed at graduate students and professional researchers in the fields of demography, ecology, animal behaviour, genetics, evolutionary biology, mathematical biology, and wildlife management.
Demography is everywhere in our lives: from birth to death. Indeed, the universal currencies of survival, development, reproduction, and recruitment shape the performance of all species, from microbes to humans. The number of techniques for demographic data acquisition and analyses across the entire tree of life (microbes, fungi, plants, and animals) has drastically increased in recent decades. These developments have been partially facilitated by the advent of technologies such as GIS and drones, as well as analytical methods including Bayesian statistics and high-throughput molecular analyses. However, despite the universality of demography and the significant research potential that could emerge from unifying: (i) questions across taxa, (ii) data collection protocols, and (iii) analytical tools, demographic methods to date have remained taxonomically siloed and methodologically disintegrated. This is the first book to attempt a truly unified approach to demography and population ecology in order to address a wide range of questions in ecology, evolution, and conservation biology across the entire spectrum of life. This novel book provides the reader with the fundamentals of data collection, model construction, analyses, and interpretation across a wide repertoire of demographic techniques and protocols. It introduces the novice demographer to a broad range of demographic methods, including abundance-based models, life tables, matrix population models, integral projection models, integrated population models, individual based models, and more. Through the careful integration of data collection methods, analytical approaches, and applications, clearly guided throughout with fully reproducible R scripts, the book provides an up-to-date and authoritative overview of the most popular and effective demographic tools. Demographic Methods across the Tree of Life is aimed at graduate students and professional researchers in the fields of demography, ecology, animal behaviour, genetics, evolutionary biology, mathematical biology, and wildlife management.
The global loss of biodiversity is occurring at an unprecedented pace. Despite the considerable effort devoted to conservation science and management, we still lack even the most basic data on the distribution and density of the majority of plant and animal species, which in turn hampers our efforts to study changes over time. In addition, we often lack behavioural data from the very animals most influenced by environmental changes; this is largely due to the financial and logistical limitations associated with gathering scientific data on species that are cryptic, widely distributed, range over large areas, or negatively influenced by human presence. To overcome these limitations, conservationists are increasingly employing technology to facilitate such data collection. Innovative solutions have been driven by dramatic advances in the conservation-technology interface. The use of camera traps, acoustic sensors, satellite data, drones, and computer algorithms to analyse the large datasets collected are all becoming increasingly widespread. Although specialist books are available on some of these individual technologies, this is the first comprehensive text to describe the breadth of available technology for conservation and to evaluate its varied applications, bringing together a team of international experts using a diverse range of approaches. Conservation Technology is suitable for graduate level students, professional researchers, practitioners and field managers in the fields of ecology and conservation biology.
The history of particle physics, the hunt for the most elusive particle, and the fundamental questions the search has inspired How did physicists combine talent and technology to discover the Higgs boson, the last piece in our inventory of the subatomic world? How did the Higgs change our understanding of the universe? And now, nearly a decade after its detection, what comes next? Answering these questions, Ivo van Vulpen-a CERN particle physicist and member of the team behind the detection-invites us on a journey to the frontiers of our knowledge. Enjoy Van Vulpen's accessible explanation of the history of particle physics and of concepts like quantum mechanics and relativity, and ponder his inquiries regarding the search for new particles (to explain dark matter), a new force (to combine the existing fundamental forces), and new phenomena (undiscovered dimensions of space). This is a lively account of work at the world's highest-energy particle accelerator, with inspiring personal reflections on humanity's discoveries deeper and deeper into the world of the very small.
Experiments, surveys, measurements, and observations all generate data. These data can provide useful insights for solving problems, guiding decisions, and formulating strategy. Progressing from relatively unprocessed data to insight, and doing so efficiently, reliably, and confidently, does not come easily, and yet gaining insights from data is a fundamental skill for science as well as many other fields and often overlooked in most textbooks of statistics and data analysis. This accessible and engaging book provides readers with the knowledge, experience, and confidence to work with data and unlock essential information (insights) from data summaries and visualisations. Based on a proven and successful undergraduate course structure, it charts the journey from initial question, through data preparation, import, cleaning, tidying, checking, double-checking, manipulation, and final visualization. These basic skills are sufficient to gain useful insights from data without the need for any statistics; there is enough to learn about even before delving into that world! The book focuses on gaining insights from data via visualisations and summaries. The journey from raw data to insights is clearly illustrated by means of a comprehensive Workflow Demonstration in the book featuring data collected in a real-life study and applicable to many types of question, study, and data. Along the way, readers discover how to efficiently and intuitively use R, RStudio, and tidyverse software, learning from the detailed descriptions of each step in the instructional journey to progress from the raw data to creating elegant and informative visualisations that reveal answers to the initial questions posed. There are an additional three demonstrations online! Insights from Data with R is suitable for undergraduate students and their instructors in the life and environmental sciences seeking to harness the power of R, RStudio, and tidyverse software to master the valuable and prerequisite skills of working with and gaining insights from data.
Ecological Methods by the late T.R. E. Southwood and revised over the years by P. A. Henderson has developed into a classic reference work for the field biologist. It provides a handbook of ecological methods and analytical techniques pertinent to the study of animals, with an emphasis on non-microscopic animals in both terrestrial and aquatic environments. It remains unique in the breadth of the methods presented and in the depth of the literature cited, stretching right back to the earliest days of ecological research. The universal availability of R as an open source package has radically changed the way ecologists analyse their data. In response, Southwood's classic text has been thoroughly revised to be more relevant and useful to a new generation of ecologists, making the vast resource of R packages more readily available to the wider ecological community. By focusing on the use of R for data analysis, supported by worked examples, the book is now more accessible than previous editions to students requiring support and ideas for their projects. Southwood's Ecological Methods provides a crucial resource for both graduate students and research scientists in applied ecology, wildlife ecology, fisheries, agriculture, conservation biology, and habitat ecology. It will also be useful to the many professional ecologists, wildlife biologists, conservation biologists and practitioners requiring an authoritative overview of ecological methodology.
Experiments, surveys, measurements, and observations all generate data. These data can provide useful insights for solving problems, guiding decisions, and formulating strategy. Progressing from relatively unprocessed data to insight, and doing so efficiently, reliably, and confidently, does not come easily, and yet gaining insights from data is a fundamental skill for science as well as many other fields and often overlooked in most textbooks of statistics and data analysis. This accessible and engaging book provides readers with the knowledge, experience, and confidence to work with data and unlock essential information (insights) from data summaries and visualisations. Based on a proven and successful undergraduate course structure, it charts the journey from initial question, through data preparation, import, cleaning, tidying, checking, double-checking, manipulation, and final visualization. These basic skills are sufficient to gain useful insights from data without the need for any statistics; there is enough to learn about even before delving into that world! The book focuses on gaining insights from data via visualisations and summaries. The journey from raw data to insights is clearly illustrated by means of a comprehensive Workflow Demonstration in the book featuring data collected in a real-life study and applicable to many types of question, study, and data. Along the way, readers discover how to efficiently and intuitively use R, RStudio, and tidyverse software, learning from the detailed descriptions of each step in the instructional journey to progress from the raw data to creating elegant and informative visualisations that reveal answers to the initial questions posed. There are an additional three demonstrations online! Insights from Data with R is suitable for undergraduate students and their instructors in the life and environmental sciences seeking to harness the power of R, RStudio, and tidyverse software to master the valuable and prerequisite skills of working with and gaining insights from data.
This text provides the reader with a comprehensive understanding of the key ideas behind the physics of particle accelerators. Supported by a clear mathematical treatment and a range of calculations which develop a genuine feeling for the subject, it is a thorough introduction to the many aspects of accelerator physics.
The present biodiversity crisis is rife with opportunities to make important conservation decisions; however, the misuse or misapplication of the methods and techniques of animal ecology can have serious consequences for the survival of species. Still, there have been relatively few critical reviews of methodology in the field. This book provides an analysis of some of the most frequently used research techniques in animal ecology, identifying their limitations and misuses, as well as possible solutions to avoid such pitfalls. In the process, contributors to this volume present new perspectives on the collection, analysis, and interpretation of data. "Research Techniques in Animal Ecology" is an overarching account of central theoretical and methodological controversies in the field, rather than a handbook on the minutiae of techniques. The editors have forged comprehensive presentations of key topics in animal ecology, such as territory and home range estimates, habitation evaluation, population viability analysis, GIS mapping, and measuring the dynamics of societies. Striking a careful balance, each chapter begins by assessing the shortcomings and misapplications of the techniques in question, followed by a thorough review of the current literature, and concluding with possible solutions and suggested guidelines for more robust investigations.
"BioCoder" is a quarterly newsletter for DIYbio, synthetic bio, and anything related. You ll discover: Articles about interesting projects and experiments, such as the glowing plantArticles about tools, both those you buy and those you buildVisits to DIYbio laboratoriesProfiles of key people in the communityAnnouncements of events and other items of interestSafety pointers and tips about good laboratory practiceAnything that s interesting or useful: you tell us!And "BioCoder" is free (for the time being), unless you want a dead-tree version. We d like "BioCoder" to become self supporting (maybe even profitable), but we ll worry about that after we ve got a few issues under our belt.If you d like to contribute, send email to [email protected]. Tell us what you d like to do, and we ll get you started." |
You may like...
Measuring Nothing, Repeatedly - Null…
Allan Franklin, Ronald Laymon
Paperback
R758
Discovery Miles 7 580
STEM Research for Students Volume 1…
Julia H Cothron, Ronald N Giese, …
Hardcover
R2,712
Discovery Miles 27 120
STEM Research for Students Volume 2…
Julia H Cothron, Ronald N Giese, …
Hardcover
R2,726
Discovery Miles 27 260
Tools of Chemistry Education Research
Diane M Bunce, Renee S. Cole
Hardcover
R5,206
Discovery Miles 52 060
Inquiry-Based Experiments in Chemistry
Valerie Ludwig Lechtanski
Hardcover
R954
Discovery Miles 9 540
Mentoring Strategies To Facilitate the…
Kerry Karukstis, Bridget Gourley, …
Hardcover
R5,463
Discovery Miles 54 630
|