![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Science: general issues > Scientific equipment & techniques, laboratory equipment > General
For courses in Microbiology Lab and Nursing and Allied Health Microbiology Lab A Flexible Approach to the Modern Microbiology Lab Easy to adapt for almost any microbiology lab course, this versatile, comprehensive, and clearly written manual is competitively priced and can be paired with any undergraduate microbiology text. Known for its thorough coverage, straightforward procedures, and minimal equipment requirements, the Eleventh Edition incorporates current safety protocols from governing bodies such as the EPA, ASM, and AOAC. The new edition also includes alternate organisms for experiments for easy customisation in Biosafety Level 1 and 2 labs. New lab exercises have been added on Food Safety and revised experiments, and include options for alternate media, making the experiments affordable and accessible to all lab programs. Ample introductory material, engaging clinical applications, and laboratory safety instructions are provided for each experiment along with easy-to-follow procedures and flexible lab reports with review and critical thinking questions.
This updated and revised edition of a classic work provides a summary of methods for numerical computation of high resolution conventional and scanning transmission electron microscope images. At the limits of resolution, image artifacts due to the instrument and the specimen interaction can complicate image interpretation. Image calculations can help the user to interpret and understand high resolution information in recorded electron micrographs. The book contains expanded sections on aberration correction, including a detailed discussion of higher order (multipole) aberrations and their effect on high resolution imaging, new imaging modes such as ABF (annular bright field), and the latest developments in parallel processing using GPUs (graphic processing units), as well as updated references. Beginning and experienced users at the advanced undergraduate or graduate level will find the book to be a unique and essential guide to the theory and methods of computation in electron microscopy.
Data Processing Handbook for Complex Biological Data provides relevant and to the point content for those who need to understand the different types of biological data and the techniques to process and interpret them. The book includes feedback the editor received from students studying at both undergraduate and graduate levels, and from her peers. In order to succeed in data processing for biological data sources, it is necessary to master the type of data and general methods and tools for modern data processing. For instance, many labs follow the path of interdisciplinary studies and get their data validated by several methods. Researchers at those labs may not perform all the techniques themselves, but either in collaboration or through outsourcing, they make use of a range of them, because, in the absence of cross validation using different techniques, the chances for acceptance of an article for publication in high profile journals is weakened.
THIS VOLUME, WHICH IS DESIGNED FOR STAND-ALONE USE IN TEACHING AND RESEARCH, FOCUSES ON QUANTUM CHEMISTRY, AN AREA OF SCIENCE THAT MANY CONSIDER TO BE THE CENTRAL CORE OF COMPUTATIONAL CHEMISTRY. TUTORIALS AND REVIEWS COVER
A FOURTH CHAPTER TRACES CANADIAN RESEARCH IN THE EVOLUTION OF COMPUTATIONAL CHEMISTRY. ALSO INCLUDED WITH THIS VOLUME IS A SPECIAL TRIBUTE TO QCPE.FROM REVIEWS OF THE SERIES "Reviews in Computational Chemistry proves itself an invaluable resource to the computational chemist. This series has a place in every computational chemist’s library."—Journal of the American Chemical Society
Providing the knowledge and practical experience to begin analysing scientific data, this book is ideal for physical sciences students wishing to improve their data handling skills. The book focuses on explaining and developing the practice and understanding of basic statistical analysis, concentrating on a few core ideas, such as the visual display of information, modelling using the likelihood function, and simulating random data. Key concepts are developed through a combination of graphical explanations, worked examples, example computer code and case studies using real data. Students will develop an understanding of the ideas behind statistical methods and gain experience in applying them in practice. Further resources are available at www.cambridge.org/9781107607590, including data files for the case studies so students can practise analysing data, and exercises to test students' understanding.
The book introduces most of the basic tools of chemometrics including experimental design, signal analysis, statistical methods for analytical chemistry and multivariate methods. It then discusses a number of important applications including food chemistry, biological pattern recognition, reaction monitoring, optimisation of processes, medical applications. The book arises from a series of short articles that have been developed over four years on Chemweb (www.chemweb.com).
This book is both an introduction and a demonstration of how Visual Basic for Applications (VBA) can greatly enhance Microsoft Excel (R) by giving users the ability to create their own functions within a worksheet and to create subroutines to perform repetitive actions. The book is written so readers are encouraged to experiment with VBA programming with examples using fairly simple physics or non-complicated mathematics such as root finding and numerical integration. Tested Excel (R) workbooks are available for each chapter and there is nothing to buy or install.
As this book. Antibacterial Peptide Protocols, will attest, my enthusi asm for the field of antibacterial peptides is based on a conviction (and I am unashamed to say, prejudice) that these substances are in essence antibiotics produced by the host that then participate in host defense against infectious agents. Because of their capacity to exert antibiotic-like action against patho genic microorganisms (bacteria, fungi, parasites, and viruses), there is reason to believe that these agents will soon be used clinically to treat infectious diseases. In fact, in recent years, biotechnology companies have been formed for the sole purpose of developing antibacterial peptides for clinical use. It should be emphasized that antibacterial peptides will likely play a major role in the treatment of infectious diseases, particularly with the increasing prob lem of multidrug-resistant microbes and the relative dearth of new antibiotics being provided by pharmaceutical companies. The topic of this volume of Methods in Molecular Biology, the diverse methods used in research on antibacterial peptides, is thus quite timely. As the subject of antibacterial peptides develops into its own discipline (something strongly suggested by the explosion in the number of papers published over the past decade), it is essential that reliable techniques and strategies be made available not only to those of us in the field, but also to the newcomers and researchers in complementary disciplines."
New trends in solid-phase extraction for analytical use—a practical introduction. Owing to its low cost, ease of use, and nonpolluting means of preparing samples for analysis, solid-phase extraction (SPE) is fast overtaking traditional liquid—liquid methods in clinical, pharmaceutical, agricultural, and industrial applications. This book describes what analytical scientists and technicians need to know about this emerging procedure: how it works, how to choose from available techniques, how to utilize it effectively in the laboratory. Along with the historical perspective and fundamental principles, this practical book reviews the latest literature on solid-phase materials, equipment, and applications—including EPA-endorsed techniques. Special features include:
SOLID-PHASE MICROEXTRACTION Theory and Practice Janusz Pawliszyn 1997 (0-471-19034-9) 264 pp.
Scattering experiments, using X-ray, light and neutron sources (in
historical order) are key techniques for studying structure and
dynamics in systems containing colliods, polymers, surfactants and
biological macromolecules, summarized here as soft condensed
matter. The education in this field in Europe is very heterogeneous
and frequently inadequate, which severely limits an efficient use
of these methods, especially at large-scale facilities. The series
of "Bombannes" schools and the completely revised and updated
second edition of the lecture notes are devoted to a practical
approach to current methodology of static and dynamic techiques.
Basic information on data interpretation, on the complementarity of
the different types of radiation, as well as information on recent
applications and developments is presented. The aim is to avoid
over - as well as under-exploitation of data.
Synchrotron radiation has been a revolutionary and invaluable research tool for a wide range of scientists, including chemists, biologists, physicists, materials scientists, geophysicists. It has also found multidisciplinary applications with problems ranging from archeology through cultural heritage to paleontology. The subject of this book is x-ray spectroscopy using synchrotron radiation, and the target audience is both current and potential users of synchrotron facilities. The first half of the book introduces readers to the fundamentals of storage ring operations, the qualities of the synchrotron radiation produced, the x-ray optics required to transport this radiation, and the detectors used for measurements. The second half of the book describes the important spectroscopic techniques that use synchrotron x-rays, including chapters on x-ray absorption, x-ray fluorescence, resonant and non-resonant inelastic x-ray scattering, nuclear spectroscopies, and x-ray photoemission. A final chapter surveys the exciting developments of free electron laser sources, which promise a second revolution in x-ray science. Thanks to the detailed descriptions in the book, prospective users will be able to quickly begin working with these techniques. Experienced users will find useful summaries, key equations, and exhaustive references to key papers in the field, as well as outlines of the historical developments in the field. Along with plentiful illustrations, this work includes access to supplemental Mathematica notebooks, which can be used for some of the more complex calculations and as a teaching aid. This book should appeal to graduate students, postdoctoral researchers, and senior scientists alike.
This volume is a compilation of laboratory protocols and methodology required for the study of molecular chaperones and the cellular stress response. Chapters detail stress response in Hsf1, Hsf2 and Hsf4 knockout mice, mapping HSP interaction networks, the LUminescence-based Mammalian IntERactome (LUMIER), Hsp70 biology, protein folding activity of Hsp90, cytotoxicity of HSP inhibitors, computational approaches for modeling allosteric Hsp90 interactions, HSPs in immunity and vaccine development , and biologies of Hsp70 and Hsp90. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Chaperones: Methods and Protocols aims to ensure successful results in the further study of this vital field.
The new techniques of molecular cytogenetics, mainly fluorescence in situ hybridization (FISH) of DNA probes to metaphase chromosomes or interphase nuclei, have been developed in the past two decades. Many FISH techniques have been implemented for diagnostic services, whereas some others are mainly used for investigational purposes. Several hundreds of FISH probes and hybridization kits are now commercially available, and the list is growing rapidly. FISH has been widely used as a powerful diagnostic tool in many areas of medicine including pediatrics, medical genetics, maternal-fetal medicine, reproductive medicine, pathology, hematology, and oncology. Frequently, a physician may be puzzled by the variety of FISH techniques and wonder what test to order. It is not uncommon that a sample is referred to a laboratory for FISH without indicating a specific test. On the other hand, a cytogeneticist or a technologist in a laboratory needs, from case to case, to determine which procedure to perform and which probe to use for an informative result. To obtain the best results, one must use the right DNA probes and have reliable protocols and measures of quality assurance in place. Also, one must have sufficient knowledge in both traditional and molecular cytogenetics, as well as the particular areas of medicine for which the test is used in order to appropriately interpret the FISH results, and to correlate them with clinical diagnosis, treatment, and prognosis.
Covers experiment planning, execution, analysis, and reporting This single-source resource guides readers in planning and conducting credible experiments for engineering, science, industrial processes, agriculture, and business. The text takes experimenters all the way through conducting a high-impact experiment, from initial conception, through execution of the experiment, to a defensible final report. It prepares the reader to anticipate the choices faced during each stage. Filled with real-world examples from engineering science and industry, Planning and Executing Credible Experiments: A Guidebook for Engineering, Science, Industrial Processes, Agriculture, and Business offers chapters that challenge experimenters at each stage of planning and execution and emphasizes uncertainty analysis as a design tool in addition to its role for reporting results. Tested over decades at Stanford University and internationally, the text employs two powerful, free, open-source software tools: GOSSET to optimize experiment design, and R for statistical computing and graphics. A website accompanies the text, providing additional resources and software downloads. A comprehensive guide to experiment planning, execution, and analysis Leads from initial conception, through the experiment's launch, to final report Prepares the reader to anticipate the choices faced throughout an experiment Hones the motivating question Employs principles and techniques from Design of Experiments (DoE) Selects experiment designs to obtain the most information from fewer experimental runs Offers chapters that propose questions that an experimenter will need to ask and answer during each stage of planning and execution Demonstrates how uncertainty analysis guides and strengthens each stage Includes examples from real-life industrial experiments Accompanied by a website hosting open-source software Planning and Executing Credible Experiments is an excellent resource for graduates and senior undergraduates--as well as professionals--across a wide variety of engineering disciplines.
Many chemists - especially those most brilliant in their field - fail to appreciate the power of planned experimentation. They dislike the mathematical aspects of statistical analysis. In addition, these otherwise very capable chemists also dismissed predictive models based only on empirical data. Ironically, in the hands of subject matter experts like these elite chemists, the statistical methods of mixture design and analysis provide the means for rapidly converging on optimal compositions. What differentiates Formulation Simplified from the standard statistical texts on mixture design is that the authors make the topic relatively easy and fun to read. They provide a whole new collection of insighful original studies that illustrate the essentials of mixture design and analysis. Solid industrial examples are offered as problems at the end of many chapters for those who are serious about trying new tools on their own. Statistical software to do the computations can be freely accessed via a web site developed in support of this book.
As a response to the climate crisis and its effect on marine ecosystems and coastal populations, this book proposes concrete science driven solutions at establishing transformation pathways towards Sustainable Blue Growth, that are supported by technically and socially innovative innovations. This book proposes investment options and management solutions that have the potential of making our seas and oceans resilient to crises- climate, financial, health- by laying the foundations for a green/blue, circular economy that is anchored in science driven solutions and geared toward public well-being. Now is the time to usher in systemic economic change and the good news is that we have our blueprint: it's the combination of UN Agenda 2030 (17 SDG) and European Commission's European Green Deal! There is no doubt that the Earth's survival will depend on the protection and sustainable management of our seas and oceans and the resources they provide. This is recognized by the Joint Communication on International Ocean Governance, which is an integral part of the EU's response to the United Nations' 2030 Agenda for Sustainable Development, and in particular to the targets set out by Sustainable Development Goal 14 (SDG 14) to "conserve and sustainably use the oceans, seas and marine resources". The analytical framework and science-driven concrete management solutions proposed in this book can accelerate the transition to a sustainable management of our seas and oceans, by turning the current challenges into opportunities for sustainable economic growth which is both environmentally resilient and leaves no one behind.
Superconducting devices, which can carry huge currents and generate strong magnetic fields without losing energy, are improving at a tremendous pace. This book provides a modern, up-to-date reference on both the physics and the technology of superconducting magnets. It is unique in combining the theoretical aspects of superconductivity, electromagnetic field theory, and the thermodynamics of helium cooling with the technological details of producing and engineering high performance superconducting materials. The book provides the reliable, expert advice for designing, manufacturing, and testing complex high field superconducting magnets of predictable performance, and it places particular emphasis on beam transport and accelerator magnets in high energy particle physics.
This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Volume 19 is centered on the theme of macroscopic modeling, and discusses topics such as: Monte Carlo simulation techniques, computing hydrophobicity, classical trajectory simulations within the Born-Oppenheimer approximation, and the theory behind the widely used Poisson-Boltzmann equation. FROM REVIEWS OF THE SERIES "Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry." "One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general)."
A zebrafish, the hull of a miniature ship, a mathematical equation and a food chain - what do these things have in common? They are examples of models used by scientists to isolate and study particular aspects of the world around us. This book begins by introducing the concept of a scientific model from an intuitive perspective, drawing parallels to mental models and artistic representations. It then recounts the history of modelling from the 16th century up until the present day. The iterative process of model building is described and discussed in the context of complex models with high predictive accuracy versus simpler models that provide more of a conceptual understanding. To illustrate the diversity of opinions within the scientific community, we also present the results of an interview study, in which ten scientists from different disciplines describe their views on modelling and how models feature in their work. Lastly, it includes a number of worked examples that span different modelling approaches and techniques. It provides a comprehensive introduction to scientific models and shows how models are constructed and used in modern science. It also addresses the approach to, and the culture surrounding modelling in different scientific disciplines. It serves as an inspiration for model building and also facilitates interdisciplinary collaborations by showing how models are used in different scientific fields. The book is aimed primarily at students in the sciences and engineering, as well as students at teacher training colleges but will also appeal to interested readers wanting to get an overview of scientific modelling in general and different modelling approaches in particular.
The Transmission Electron Microscope (TEM) is the ultimate tool to see and measure structures on the nanoscale and to probe their elemental composition and electronic structure with sub-nanometer spatial resolution. Recent technological breakthroughs have revolutionized our understanding of materials via use of the TEM, and it promises to become a significant tool in understanding biological and biomolecular systems such as viruses and DNA molecules. This book is a practical guide for scientists who need to use the TEM as a tool to answer questions about physical and chemical phenomena on the nanoscale.
A complete guide to choosing and using the best analytical technique for the job at hand Today's new generation of spectroscopic instrumentation allows for more accurate and varied measurements than ever before. At the same time, increasingly powerful, user-friendly PC hardware and software make running those instruments relative child's play. However, although they may have solved many of the problems traditionally associated with conducting molecular spectroscopic analyses, these refinements tend to obscure inherent technical challenges which, if not taken into consideration, can seriously undermine a research initiative. Modern Techniques in Applied Molecular Spectroscopy gives scientists and technicians the knowledge they need to address those challenges and to make optimal selection and use of contemporary molecular spectroscopic techniques and technologies. While editor Francis Mirabella and contributors provide ample background information about how and why individual techniques work, they concentrate on practical considerations of crucial concern to researchers working in industry. For each technique covered, they provide expert guidance on method selection, sample preparation, troubleshooting, data handling and analysis, and more. Adhering principally to mid-IR molecular spectroscopic techniques, they clearly describe the guiding principles behind, characteristics of, and suitable applications for transmission spectroscopy, reflectance spectroscopies, photoacoustic spectroscopy, infrared and Raman microspectroscopy, fiber optic techniques, and emission spectroscopy. Modern Techniques in Applied Molecular Spectroscopy is an indispensable working resource for analytical scientists and technicians working in an array of industries.
Practical NMR Spectroscopy Laboratory Guide is designed to provide non-expert NMR users, typically graduate students in chemistry, an introduction to various facets of practical solution-state NMR spectroscopy. Each chapter offers a series of hands-on exercises, introducing various NMR concepts and experiments and guiding the reader in running these experiments using an NMR spectrometer. The book is written for use with a Bruker NMR spectrometer running TopSpin software versions 1 or 2. This practical resource functions both as a text for instructors of a practical NMR course and also as a reference for spectrometer administrators or NMR facility directors when doing user training. This guide serves as serve as excellent, practical resource on its own or as a companion book to Timothy Claridge's High-Resolution NMR Techniques in Organic Chemistry, 2nd Edition (Elsevier, 2009).
The work of accident prevention in the lab begins with foresight. Discerning "close calls"—near accidents—early enough prevents them from turning into full-fledged mishaps, mishaps that cost time and money, and which could result in injury. Improving Safety in the Chemical Laboratory is an accident prevention handbook for the professional in the lab that shows how to detect and eliminate the causes of dangerous mishaps—and virtually "hazard proof" any lab environment. In unequivocally clear and practical terms, Improving Safety in the Chemical Laboratory, Second Edition offers detailed procedures—from precautionary labeling to simulated drills, safety inspections,and the preparation of a chemical hygiene plan—for the development of a safety-enhanced workplace. Reflecting, in part, the upgraded procedures now mandated by the OSHA Laboratory Standard in the USA, as well as the WHMIS regulations in Canada and the COSHH regulations in the United Kingdom, this newest edition offers unparalleled and up-to-date guidance on the fine points of hazard control, with new added material on managing and handling especially hazardous substances and personal protective equipment:
|
You may like...
Introduction to Reliable and Secure…
Christian Cachin, Rachid Guerraoui, …
Hardcover
R2,479
Discovery Miles 24 790
Digital Sport for Performance…
Nigel Pope, Kerri-Ann L Kuhn, …
Hardcover
R4,966
Discovery Miles 49 660
|