![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Science: general issues > Scientific equipment & techniques, laboratory equipment > General
Limited resources and other factors pose major challenges for engineering, technology, and science educators ability to provide adequate laboratory experience for students. An Internet accessible remote laboratory, which is an arrangement that allows laboratory equipment to be controlled remotely, addresses these difficulties and allows more efficient laboratory management. Internet Accessible Remote Laboratories: Scalable E-Learning Tools for Engineering and Science Disciplines collects current developments in the multidisciplinary creation of Internet accessible remote laboratories. This book offers perspectives on teaching with online laboratories, pedagogical design, system architectures for remote laboratories, future trends, and policy issues in the use of remote laboratories. It is useful resource for graduate and undergraduate students in electrical and computer engineering and computer science programs, as well as researchers who are interested in learning more about the current status of the field, as well as various approaches to remote laboratory design.
Algae are simple, primitive, heterogeneous, autotrophic, eukaryotic or prokaryotic organisms that lead a symbiotic, parasitic or free-living mode of life. Microalgae and macroalgae possess great potential in various fields of application. Microalgae are ubiquitous and extremely diverse microorganisms that can accumulate toxic contaminants and heavy metals from wastewater, making them a superior candidate to become a powerful nanofactory. Algae were discovered to reduce the presence of metal ions, and afterwards aid in the biosynthesis of nanoparticles. Since algae-mediated biogenic nanoparticles are eco-friendly, cost-effective, high-yielding, speedy and energy-efficient, a large number of studies have been published on them in the last few years. This book focuses on recent progress on the utilization of algae for the synthesis of nanoparticles, their characterization and the possible mechanisms involved. Bioprospecting Algae for Nanosized Materials describes the synthesis of algal nanomaterials and its application in various fields for sustainable development. This book outlines the procedures to prepare phyconanomaterials, techniques to utilize the nanomaterials, and applications in agriculture, environment and medicine.
Spark scientific curiosity from a young age with this six-level course through an enquiry-based approach and active learning. Collins International Primary Science fully meets the requirements of the Cambridge Primary Science Curriculum Framework from 2020 and has been carefully developed for a range of international contexts. The course is organised into four main strands: Biology, Chemistry, Physics and Earth and Space and the skills detailed under the 'Thinking and Working Scientifically' strand are introduced and taught in the context of those areas. For each Workbook at Stages 1 to 6, we offer: A write-in Workbook linked to the Student's Book New language development activities help build science vocabulary Earth and Space content covers the new curriculum framework Thinking and Working Scientifically deepens and enhances the delivery of Science skills Actively learn through practical activities that don't require specialist equipment or labs Scaffolding allows students of varying abilities to work with common content and meet learning objectives Supports Cambridge Global Perspectives (TM) with activities that develop and practise key skills Provides learner support as part of a set of resources for the Cambridge Primary Science curriculum framework (0097) from 2020 This series is endorsed by Cambridge Assessment International Education to support the new curriculum framework 0097 from 2020.
This book discusses fundamentally new biomedical imaging methods, such as holography, holographic and resonant interferometry, and speckle optics. It focuses on the development of holographic interference microscopy and its use in the study of phase objects such as nerve and muscle fibers subjected to the influence of laser radiation, magnetic fields, and hyperbaric conditions. The book shows how the myelin sheath and even the axon itself exhibit waveguide properties, enabling a fresh new look at the mechanisms of information transmission in the human body. The book presents theoretically and experimentally tested holographic and speckle-optical methods and devices used for investigating complex, diffusely scattering surfaces such as skin and muscle tissue. Additionally, it gives broad discussion of the authors' own original fundamental and applied research dedicated to helping physicians introduce new contact-less methods of diagnosis and treatment of diseases of the cardiovascular and neuromuscular systems into medical practice. The book is aimed at a broad spectrum of scientific specialists in the fields of speckle optics, holography, laser physics, morphology and cytochemistry, as well as medical professionals such as physiologists, neuropathologists, neurosurgeons, cardiologists and dentists.
The first edition of this classic book has become the authoritative reference for physicists desiring to master the finer points of statistical data analysis. This second edition contains all the important material of the first, much of it unavailable from any other sources. In addition, many chapters have been updated with considerable new material, especially in areas concerning the theory and practice of confidence intervals, including the important Feldman?Cousins method. Both frequentist and Bayesian methodologies are presented, with a strong emphasis on techniques useful to physicists and other scientists in the interpretation of experimental data and comparison with scientific theories. This is a valuable textbook for advanced graduate students in the physical sciences as well as a reference for active researchers.
Organic synthesis is a vibrant and rapidly evolving field; we can now cyclize amines directly onto alkenes. Like its predecessors, this reference leads readers quickly to the field's more important recent developments. Two years of Douglass F. Taber's popular weekly online column, "Organic Chemistry Highlights", as featured on the organic-chemistry.org website, are consolidated here, with cumulative indices of all three volumes in this series. Important topics that are covered range from powerful new methods for C-C bond construction to asymmetric organocatalysis and direct C-H functionalization. This go-to reference focuses on the most important recent developments in organic synthesis, and includes a succinct analysis of the significance and applicability of each new synthetic method.
Annual Reports in Computational Chemistry is a new periodical
providing timely and critical reviews of important topics in
computational chemistry as applied to all chemical disciplines.
Topics covered include quantum chemistry, molecular mechanics,
force fields, chemical education, and applications in academic and
industrial settings. Each volume is organized into (thematic)
sections with contributions written by experts. Focusing on the
most recent literature and advances in the field, each article
covers a specific topic of importance to computational chemists.
Annual Reports in Computational Chemistry is a 'must' for
researchers and students wishing to stay up-to-date on current
developments in computational chemistry.
The knowledge base of chromatography continued to expand throughout
the 1990s owing to its many applications to problems of
contemporary interest in industry, life and environmental sciences.
Organizing this information into a single text for a diverse group
of scientists has become increasingly difficult. The present book
stemmed from the desire to revise Chromatography Today, written by
the same author with Salwa K. Poole, and published in 1991. This
title is considered to be one of the definitive texts on
chromatography. It was soon realized however, that a simple
revision would not provide the desired result of a contemporary
picture of the practice of chromatography at the turn of the
century. The only workable solution was to start afresh,
maintaining the same general philosophy and concept for
Chromatography Today where possible, while creating essentially a
new book.
Measurements and experiments are made each and every day, in fields as disparate as particle physics, chemistry, economics and medicine, but have you ever wondered why it is that a particular experiment has been designed to be the way it is. Indeed, how do you design an experiment to measure something whose value is unknown, and what should your considerations be on deciding whether an experiment has yielded the sought after, or indeed any useful result? These are old questions, and they are the reason behind this volume. We will explore the origins of the methods of data analysis that are today routinely applied to all measurements, but which were unknown before the mid-19th Century. Anyone who is interested in the relationship between the precision and accuracy of measurements will find this volume useful. Whether you are a physicist, a chemist, a social scientist, or a student studying one of these subjects, you will discover that the basis of measurement is the struggle to identify the needle of useful data hidden in the haystack of obscuring background noise.
Over the last two decades, advances in the design, miniaturization, and analytical capabilities of portable X-ray fluorescence (pXRF) instrumentation have led to its rapid and widespread adoption in a remarkably diverse range of applications in research and industrial fields. The impetus for this volume was that, as pXRF continues to grow into mainstream use, analysts should be increasingly empowered with the right information to safely and effectively employ pXRF as part of their analytical toolkit. This volume provides introductory and advanced-level users alike with readings on topics ranging from basic principles of pXRF and qualitative and quantitative approaches, through to machine learning and artificial intelligence for enhanced applications. It also includes fundamental guidance on calibrations, the mathematics of calculating uncertainties, and an extensive reference index of all elements and their interactions with X-rays. Contributing authors have provided a wealth of information and case studies in industry-specific chapters. These sections delve into detail on current standard practices in industry and research, including examples from agricultural and geo-exploration sectors, research in art and archaeology, and metals industrial and regulatory applications. As pXRF continues to grow in use in industrial and academic settings, it is essential that practitioners continue to learn, share, and implement informed and effective use of this technique. This volume serves as an accessible guidebook and go-to reference manual for new and experienced users in pXRF to achieve this goal.
THIS VOLUME, WHICH IS DESIGNED FOR STAND-ALONE USE IN TEACHING AND
RESEARCH, FOCUSES ON QUANTUM CHEMISTRY, AN AREA OF SCIENCE THAT
MANY CONSIDER TO BE THE CENTRAL CORE OF COMPUTATIONAL CHEMISTRY.
TUTORIALS AND REVIEWS COVER
For many years, evidence suggested that all solid materials either possessed a periodic crystal structure as proposed by the Braggs or they were amorphous glasses with no long-range order. In the 1970s, Roger Penrose hypothesized structures (Penrose tilings) with long-range order which were not periodic. The existence of a solid phase, known as a quasicrystal, that possessed the structure of a three dimensional Penrose tiling, was demonstrated experimentally in 1984 by Dan Shechtman and colleagues. Shechtman received the 2011 Nobel Prize in Chemistry for his discovery. The discovery and description of quasicrystalline materials provided the first concrete evidence that traditional crystals could be viewed as a subset of a more general category of ordered materials. This book introduces the diversity of structures that are now known to exist in solids through a consideration of quasicrystals (Part I) and the various structures of elemental carbon (Part II) and through an analysis of their relationship to conventional crystal structures. Both quasicrystals and the various allotropes of carbon are excellent examples of how our understanding of the microstructure of solids has progressed over the years beyond the concepts of traditional crystallography.
This book focuses on the morphology, exine ornamentation and the associated evolutionary trends of crabapple pollen and anatomical developmental patterns. To examine the genetic evolutionary patterns of crabapple pollen traits, we constructed an interval distribution function based on characteristic pollen parameters and used a binary trivariate data matrix (Xi Yi Zi) to reflect the exine ornamentation regularity of the pollen. Our findings should inform the taxonomic status of the genus Malus. Pollen electron micrographs from a total of 26 species and 81 cultivars of Malus were recorded in this book. All 107 figures and 642 scanned pollen images constitute primary data obtained by the authors. The images in this book are clear, three-dimensional, and aesthetically pleasing. They are accompanied with text descriptions and provided a method for the indication of the different types of information that can be expected. This book can provide a reference for scientific researchers, students, and teachers in tertiary institutions that are engaged in research concerning crabapple production.
This volume provides an overview of modern acoustical techniques for the measurement of mechanical properties. Chapters include Fundamentals of Elastic Constants; Point Source/Point Receiver Methods; Laser Controlled Surface Acoustic Waves; Quantitative Acoustical Microscopy of Solids; Resonant Ultrasound Spectroscopy; Elastic Properties and Thermodynamics; Sound Speed as a Thermodynamic Property of Fluids; Noninvasive Determination of Sound Speed in Liquids; Introduction to the Elastic Constants of Gases; and Acoustic Measurement in Gases.
With respect to chemical applications, surface-launched acoustic wave sensors were originally developed as sensing devices for specific chemical and biological species, but more recently have been applied to the study of thin film and interfacial properties. These devices exploit the phenomenon of piezoelectricity, the instigation of mechanical motion in solids by oscillating electrical fields. This text/reference presents the principles of design and operation of these sensors and explores their traditional and emerging applications with a focus on devices that employ acoustic waves launched and received on the same surface. The book begins with a review of piezoelectricity and the genesis of acoustic wave devices, and the advent of chemical sensor technology. Subsequent chapters explore acoustic waves in solids and device structure, theory of acoustic wave response, and the various categories of acoustic wave device. The book describes the design of these devices and how they are applied in chemistry for the detection of species present in the gas and liquid phase, as well as the study of thin films placed on the sensor surface. Other topics covered include polymeric glass transitions, polymer properties, biosensor technology, and the development of sensor arrays. Each of the various types of device is examined with a view toward its application in chemistry in general and analytical chemistry in particular. Presenting the most up-to-date information available on this rapidly evolving technology, and supplemented with scores of helpful illustrations and tables, Surface-Launched Acoustic Wave Sensors draws information from such diverse areas of scientific investigation as acoustic wave physics, applied mathematics, chemistry, electronics, fluid mechanics, materials science, piezoelectricity, and polymer science. The material presented on these topics is both self-consistent and readable for the nonexpert—allowing industrial chemists, graduate students, and undergraduates to gain a deeper understanding of these devices, their designs, and applications. A focused and accessible presentation of a burgeoning new technology This book concerns the design, operation, and application of devices capable of generating acoustic waves in the ultrasonic frequency range. The clear emphasis of the text is the study of chemical and/or biochemical systems imposed on the surface of such devices, whether operated in the gas or liquid phase, i.e., on acoustic wave chemical and biological sensors. Presenting the most up-to-date information available on this rapidly evolving technology, and supplemented with scores of helpful illustrations and tables, this book
Surface science has a wide range of applications that include
semiconductor processing, catalysis, vacuum technology,
microelectronics, flat-panel displays, compact disks, televisions,
computers, environmental monitoring of pollutants, biomaterials,
artificial joints, soft tissues, food safety, pharmacy, and many
more.
The participation in interlaboratory studies and the use of
Certified Reference Materials (CRMs) are widely recognised tools
for the verification of the accuracy of analytical measurements and
they form an integral part of quality control systems used by many
laboratories, e.g. in accreditation schemes. As a response to the
need to improve the quality of environmental analysis, the European
Commission has been active in the past fifteen years, through BCR
activity (now renamed Standards, Measurements and Testing
Programme) in the organisation of series of interlaboratory studies
involving expert laboratories in various analytical fields
(inorganic, trace organic and speciation analysis applied to a wide
variety of environmental matrices). The BCR and its successor have
the task of helping European laboratories to improve the quality of
measurements in analytical sectors which are vital for the European
Union (biomedical, agriculture, food, environment and industry);
these are most often carried out in support of EC regulations,
industrial needs, trade, monitoring activities (including
environment, agriculture, health and safety) and, more generally,
when technical difficulties hamper a good comparability of data
among EC laboratories. The collaborative projects carried out so
far have placed the BCR in the position of second world CRM
producer (after NIST in the USA). "Interlaboratory Studies and Certification of Reference
Materials for Environmental Analysis" gives an account of the
importance of reference materials for the quality control of
environmental analysis and describes in detail the procedures
followed by BCR to prepare environmental reference materials,
including aspects related to sampling, stabilization,
homogenisation, homogeneity and stability testing, establishment of
reference (or certified) values, and use of reference materials.
Examples of environmental CRMs produced by BCR within the last 15
years are given, which represent more than 70 CRMs covering
different types of materials (plants, biological materials, waters,
sediments, soils and sludges, coals, ash and dust materials)
certified for a range of chemical parameters (major and trace
elements, chemical species, PAHs, PCBs, pesticides and
dioxins). The final section of the book describes how to organise
improvement schemes for the evaluation method and/or laboratory
performance. Examples of interlaboratory studies (learning scheme,
proficiency testing and intercomparison in support to prenormative
research) are also given.
Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.
Silicon, the basic material for a multibillion-dollar industry, is the most widely researched and applied semiconductor, and its surfaces are the most thoroughly studied of all semiconductor surfaces. Silicon Surfaces and Formation of Interfaces may be used as an introduction to graduate-level physics and chemical physics. Moreover, it gives a specialized and comprehensive description of the most common faces of silicon crystals as well as their interaction with adsorbates and overlayers. This knowledge is presented in a systematic and easy-to-follow way. Discussion of each system is preceded by a brief overview which categorizes the features and physical mechanisms before the details are presented. The literature is easily available, and the references am numerous and organized in tables, allowing a search without the need to browse through the text. Though this volume focuses on a scientific understanding of physics on the atomistic and mesoscopic levels, it also highlights existing and potential links between basic research in surface science and applications in the silicon industry. It will be valuable to anyone writing a paper, thesis, or proposal in the field of silicon surfaces. |
![]() ![]() You may like...
STEM Research for Students Volume 1…
Julia H Cothron, Ronald N Giese, …
Hardcover
R2,768
Discovery Miles 27 680
Chemistry as a Second Language…
Charity Flener Lovitt, Paul Kelter
Hardcover
R2,779
Discovery Miles 27 790
STEM Research for Students Volume 2…
Julia H Cothron, Ronald N Giese, …
Hardcover
R2,782
Discovery Miles 27 820
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,405
Discovery Miles 54 050
Mentoring Strategies To Facilitate the…
Kerry Karukstis, Bridget Gourley, …
Hardcover
R5,577
Discovery Miles 55 770
STEM Research for Students Volume 2…
Julia H Cothron, Ronald N Giese, …
Hardcover
R2,782
Discovery Miles 27 820
Microbial Surfaces - Structure…
Terri A. Camesano, Charlene Mello
Hardcover
R1,830
Discovery Miles 18 300
The Future of the History of Chemical…
Leah Rae Mcewen, Robert E. Buntrock
Hardcover
R5,592
Discovery Miles 55 920
|