Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Science: general issues > Scientific equipment & techniques, laboratory equipment > General
This book discusses fundamentally new biomedical imaging methods, such as holography, holographic and resonant interferometry, and speckle optics. It focuses on the development of holographic interference microscopy and its use in the study of phase objects such as nerve and muscle fibers subjected to the influence of laser radiation, magnetic fields, and hyperbaric conditions. The book shows how the myelin sheath and even the axon itself exhibit waveguide properties, enabling a fresh new look at the mechanisms of information transmission in the human body. The book presents theoretically and experimentally tested holographic and speckle-optical methods and devices used for investigating complex, diffusely scattering surfaces such as skin and muscle tissue. Additionally, it gives broad discussion of the authors' own original fundamental and applied research dedicated to helping physicians introduce new contact-less methods of diagnosis and treatment of diseases of the cardiovascular and neuromuscular systems into medical practice. The book is aimed at a broad spectrum of scientific specialists in the fields of speckle optics, holography, laser physics, morphology and cytochemistry, as well as medical professionals such as physiologists, neuropathologists, neurosurgeons, cardiologists and dentists.
Annual Reports in Computational Chemistry is a new periodical
providing timely and critical reviews of important topics in
computational chemistry as applied to all chemical disciplines.
Topics covered include quantum chemistry, molecular mechanics,
force fields, chemical education, and applications in academic and
industrial settings. Each volume is organized into (thematic)
sections with contributions written by experts. Focusing on the
most recent literature and advances in the field, each article
covers a specific topic of importance to computational chemists.
Annual Reports in Computational Chemistry is a 'must' for
researchers and students wishing to stay up-to-date on current
developments in computational chemistry.
The knowledge base of chromatography continued to expand throughout
the 1990s owing to its many applications to problems of
contemporary interest in industry, life and environmental sciences.
Organizing this information into a single text for a diverse group
of scientists has become increasingly difficult. The present book
stemmed from the desire to revise Chromatography Today, written by
the same author with Salwa K. Poole, and published in 1991. This
title is considered to be one of the definitive texts on
chromatography. It was soon realized however, that a simple
revision would not provide the desired result of a contemporary
picture of the practice of chromatography at the turn of the
century. The only workable solution was to start afresh,
maintaining the same general philosophy and concept for
Chromatography Today where possible, while creating essentially a
new book.
Measurements and experiments are made each and every day, in fields as disparate as particle physics, chemistry, economics and medicine, but have you ever wondered why it is that a particular experiment has been designed to be the way it is. Indeed, how do you design an experiment to measure something whose value is unknown, and what should your considerations be on deciding whether an experiment has yielded the sought after, or indeed any useful result? These are old questions, and they are the reason behind this volume. We will explore the origins of the methods of data analysis that are today routinely applied to all measurements, but which were unknown before the mid-19th Century. Anyone who is interested in the relationship between the precision and accuracy of measurements will find this volume useful. Whether you are a physicist, a chemist, a social scientist, or a student studying one of these subjects, you will discover that the basis of measurement is the struggle to identify the needle of useful data hidden in the haystack of obscuring background noise.
For many years, evidence suggested that all solid materials either possessed a periodic crystal structure as proposed by the Braggs or they were amorphous glasses with no long-range order. In the 1970s, Roger Penrose hypothesized structures (Penrose tilings) with long-range order which were not periodic. The existence of a solid phase, known as a quasicrystal, that possessed the structure of a three dimensional Penrose tiling, was demonstrated experimentally in 1984 by Dan Shechtman and colleagues. Shechtman received the 2011 Nobel Prize in Chemistry for his discovery. The discovery and description of quasicrystalline materials provided the first concrete evidence that traditional crystals could be viewed as a subset of a more general category of ordered materials. This book introduces the diversity of structures that are now known to exist in solids through a consideration of quasicrystals (Part I) and the various structures of elemental carbon (Part II) and through an analysis of their relationship to conventional crystal structures. Both quasicrystals and the various allotropes of carbon are excellent examples of how our understanding of the microstructure of solids has progressed over the years beyond the concepts of traditional crystallography.
Spark scientific curiosity from a young age with this six-level course through an enquiry-based approach and active learning. Collins International Primary Science fully meets the requirements of the Cambridge Primary Science Curriculum Framework from 2020 and has been carefully developed for a range of international contexts. The course is organised into four main strands: Biology, Chemistry, Physics and Earth and Space and the skills detailed under the 'Thinking and Working Scientifically' strand are introduced and taught in the context of those areas. For each Student's Book at Stages 1 to 6, we offer: A full colour and highly illustrated Student's Book Photo-rich spreads show that science is 'real' and puts it into context Earth and Space content covers the new curriculum framework Thinking and Working Scientifically deepens and enhances the delivery of Science skills Actively learn through practical activities that don't require specialist equipment or labs Scaffolding allows students of varying abilities to work with common content and meet learning objectives Supports Cambridge Global Perspectives (TM) with activities that develop and practise key skills Provides learner support as part of a set of resources for the Cambridge Primary Science curriculum framework (0097) from 2020 This series is endorsed by Cambridge Assessment International Education to support the new curriculum framework 0097 from 2020.
This book focuses on the morphology, exine ornamentation and the associated evolutionary trends of crabapple pollen and anatomical developmental patterns. To examine the genetic evolutionary patterns of crabapple pollen traits, we constructed an interval distribution function based on characteristic pollen parameters and used a binary trivariate data matrix (Xi Yi Zi) to reflect the exine ornamentation regularity of the pollen. Our findings should inform the taxonomic status of the genus Malus. Pollen electron micrographs from a total of 26 species and 81 cultivars of Malus were recorded in this book. All 107 figures and 642 scanned pollen images constitute primary data obtained by the authors. The images in this book are clear, three-dimensional, and aesthetically pleasing. They are accompanied with text descriptions and provided a method for the indication of the different types of information that can be expected. This book can provide a reference for scientific researchers, students, and teachers in tertiary institutions that are engaged in research concerning crabapple production.
For courses in Microbiology Lab and Nursing and Allied Health Microbiology Lab A Flexible Approach to the Modern Microbiology Lab Easy to adapt for almost any microbiology lab course, this versatile, comprehensive, and clearly written manual is competitively priced and can be paired with any undergraduate microbiology text. Known for its thorough coverage, straightforward procedures, and minimal equipment requirements, the Eleventh Edition incorporates current safety protocols from governing bodies such as the EPA, ASM, and AOAC. The new edition also includes alternate organisms for experiments for easy customisation in Biosafety Level 1 and 2 labs. New lab exercises have been added on Food Safety and revised experiments, and include options for alternate media, making the experiments affordable and accessible to all lab programs. Ample introductory material, engaging clinical applications, and laboratory safety instructions are provided for each experiment along with easy-to-follow procedures and flexible lab reports with review and critical thinking questions.
This volume provides an overview of modern acoustical techniques for the measurement of mechanical properties. Chapters include Fundamentals of Elastic Constants; Point Source/Point Receiver Methods; Laser Controlled Surface Acoustic Waves; Quantitative Acoustical Microscopy of Solids; Resonant Ultrasound Spectroscopy; Elastic Properties and Thermodynamics; Sound Speed as a Thermodynamic Property of Fluids; Noninvasive Determination of Sound Speed in Liquids; Introduction to the Elastic Constants of Gases; and Acoustic Measurement in Gases.
Surface science has a wide range of applications that include
semiconductor processing, catalysis, vacuum technology,
microelectronics, flat-panel displays, compact disks, televisions,
computers, environmental monitoring of pollutants, biomaterials,
artificial joints, soft tissues, food safety, pharmacy, and many
more.
The participation in interlaboratory studies and the use of
Certified Reference Materials (CRMs) are widely recognised tools
for the verification of the accuracy of analytical measurements and
they form an integral part of quality control systems used by many
laboratories, e.g. in accreditation schemes. As a response to the
need to improve the quality of environmental analysis, the European
Commission has been active in the past fifteen years, through BCR
activity (now renamed Standards, Measurements and Testing
Programme) in the organisation of series of interlaboratory studies
involving expert laboratories in various analytical fields
(inorganic, trace organic and speciation analysis applied to a wide
variety of environmental matrices). The BCR and its successor have
the task of helping European laboratories to improve the quality of
measurements in analytical sectors which are vital for the European
Union (biomedical, agriculture, food, environment and industry);
these are most often carried out in support of EC regulations,
industrial needs, trade, monitoring activities (including
environment, agriculture, health and safety) and, more generally,
when technical difficulties hamper a good comparability of data
among EC laboratories. The collaborative projects carried out so
far have placed the BCR in the position of second world CRM
producer (after NIST in the USA). "Interlaboratory Studies and Certification of Reference
Materials for Environmental Analysis" gives an account of the
importance of reference materials for the quality control of
environmental analysis and describes in detail the procedures
followed by BCR to prepare environmental reference materials,
including aspects related to sampling, stabilization,
homogenisation, homogeneity and stability testing, establishment of
reference (or certified) values, and use of reference materials.
Examples of environmental CRMs produced by BCR within the last 15
years are given, which represent more than 70 CRMs covering
different types of materials (plants, biological materials, waters,
sediments, soils and sludges, coals, ash and dust materials)
certified for a range of chemical parameters (major and trace
elements, chemical species, PAHs, PCBs, pesticides and
dioxins). The final section of the book describes how to organise
improvement schemes for the evaluation method and/or laboratory
performance. Examples of interlaboratory studies (learning scheme,
proficiency testing and intercomparison in support to prenormative
research) are also given.
Introducing students to basic lab techniques and illustrating core chemical principles Prepared by John H. Nelson and Kenneth C. Kemp, both of the University of Nevada, this manual contains 43 finely tuned experiments chosen to introduce students to basic lab techniques and to illustrate core chemical principles. In the 14th Edition, all experiments were carefully edited for accuracy, safety, and cost. Pre-labs and questions were revised and new experiments added concerning solutions, polymers, and hydrates. Each of the experiments is self-contained, with sufficient background material, enabling students to conduct and understand the experiment. Each has a pedagogical objective to exemplify one or more specific principles. Because the experiments are self-contained, they may be undertaken in any order, although the authors have found in their General Chemistry course that the sequence of Experiments 1 through 7 provides the firmest background and introduction. To assist the student, the authors have included pre-lab questions for the student to answer before starting the lab. The questions are designed to help the student understand the experiment, to learn how to do the necessary calculations to treat their data, and as an incentive to read the experiment in advance.
The structure of a growth or an etch front on a surface is not only
a subject of great interest from the practical point of view but
also is of fundamental scientific interest. Very often surfaces are
created under non-equilibrium conditions such that the morphology
is not always smooth.
The first edition of this classic book has become the authoritative reference for physicists desiring to master the finer points of statistical data analysis. This second edition contains all the important material of the first, much of it unavailable from any other sources. In addition, many chapters have been updated with considerable new material, especially in areas concerning the theory and practice of confidence intervals, including the important Feldman?Cousins method. Both frequentist and Bayesian methodologies are presented, with a strong emphasis on techniques useful to physicists and other scientists in the interpretation of experimental data and comparison with scientific theories. This is a valuable textbook for advanced graduate students in the physical sciences as well as a reference for active researchers.
This volume is a compilation of laboratory protocols and methodology required for the study of molecular chaperones and the cellular stress response. Chapters detail stress response in Hsf1, Hsf2 and Hsf4 knockout mice, mapping HSP interaction networks, the LUminescence-based Mammalian IntERactome (LUMIER), Hsp70 biology, protein folding activity of Hsp90, cytotoxicity of HSP inhibitors, computational approaches for modeling allosteric Hsp90 interactions, HSPs in immunity and vaccine development , and biologies of Hsp70 and Hsp90. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Chaperones: Methods and Protocols aims to ensure successful results in the further study of this vital field.
This book describes modern focused ion beam microscopes and techniques and how they can be used to aid materials metrology and as tools for the fabrication of devices that in turn are used in many other aspects of fundamental metrology. Beginning with a description of the currently available instruments including the new addition to the field of plasma-based sources, it then gives an overview of ion solid interactions and how the different types of instrument can be applied. Chapters then describe how these machines can be applied to the field of materials science and device fabrication giving examples of recent and current activity in both these areas.
This volume is the cumulative subject index for volumes 1-32 of Experimental Methods in Physical Sciences.
Originally published in 1665, Micrographia is the most famous and influential work of English scholar ROBERT HOOKE (1635-1703), a notable member of the Royal Society and the scientist for whom Hooke's Law of elasticity is named. Here, Hooke describes his observations of various household and biological specimens, such as the eye of a fly and the structure of plants, and became the first person to use the term cell in biology, as the cells in plants reminded him of monk's living quarters. In addition to his studies using a microscope, Hooke also discusses the heavenly bodies as visible through a telescope. Students of science and the history of science will find Hooke's early forays into biology and optics a good primer for further learning.
This thirty-third volume of the Experimental Methods in the Physical Sciences series provides a subject and author cumulative index for all previous volumes for easy reference.
A zebrafish, the hull of a miniature ship, a mathematical equation and a food chain - what do these things have in common? They are examples of models used by scientists to isolate and study particular aspects of the world around us. This book begins by introducing the concept of a scientific model from an intuitive perspective, drawing parallels to mental models and artistic representations. It then recounts the history of modelling from the 16th century up until the present day. The iterative process of model building is described and discussed in the context of complex models with high predictive accuracy versus simpler models that provide more of a conceptual understanding. To illustrate the diversity of opinions within the scientific community, we also present the results of an interview study, in which ten scientists from different disciplines describe their views on modelling and how models feature in their work. Lastly, it includes a number of worked examples that span different modelling approaches and techniques. It provides a comprehensive introduction to scientific models and shows how models are constructed and used in modern science. It also addresses the approach to, and the culture surrounding modelling in different scientific disciplines. It serves as an inspiration for model building and also facilitates interdisciplinary collaborations by showing how models are used in different scientific fields. The book is aimed primarily at students in the sciences and engineering, as well as students at teacher training colleges but will also appeal to interested readers wanting to get an overview of scientific modelling in general and different modelling approaches in particular.
Since its inception, patch-clamp has continued to be widely considered the gold standard method to record ion channel activity. "Patch-Clamp Methods and Protocols, Second Edition," provides a comprehensive collection of new techniques for the development of automated, high-throughput screening systems for pharmacological evaluation, the use of various patch-clamp configurations together with novel molecular biological and imaging methodologies and enhanced stimulation protocols and perfusion systems. Divided into sections on pharmacology, physiology and biophysics, the chapters cover methods to generate more physiologically relevant conditions for drug application and screening technologies, recently developed applications such as optogenetic stimulation, advances in whole-cell recordings in freely-moving animals and novel technologies to create custom microelectrodes designed for reducing the access resistance and improving the rate of molecular diffusion. Patch-clamp is an indispensable technique for conducting pharmacological, physiological and biophysical research aimed at understanding crucial aspects of cellular and network function. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, "Patch-Clamp Methods and Protocols, Second Edition" will provide a useful technical and methodological guide to diverse audiences of electrophysiologists, from students to experienced investigators. |
You may like...
STEM Research for Students Volume 1…
Julia H Cothron, Ronald N Giese, …
Hardcover
R2,676
Discovery Miles 26 760
Chemistry as a Second Language…
Charity Flener Lovitt, Paul Kelter
Hardcover
R2,684
Discovery Miles 26 840
STEM Research for Students Volume 2…
Julia H Cothron, Ronald N Giese, …
Hardcover
R2,691
Discovery Miles 26 910
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,238
Discovery Miles 52 380
Mentoring Strategies To Facilitate the…
Kerry Karukstis, Bridget Gourley, …
Hardcover
R5,405
Discovery Miles 54 050
STEM Research for Students Volume 2…
Julia H Cothron, Ronald N Giese, …
Hardcover
R2,691
Discovery Miles 26 910
Microbial Surfaces - Structure…
Terri A. Camesano, Charlene Mello
Hardcover
R1,763
Discovery Miles 17 630
The Future of the History of Chemical…
Leah Rae Mcewen, Robert E. Buntrock
Hardcover
R5,419
Discovery Miles 54 190
|