![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Science: general issues > Scientific equipment & techniques, laboratory equipment > General
Both molecular spectroscopy and computational chemistry have witnessed rapid significant progresses in recent years. On the one hand, it is nowadays possible to compute, to quite a reasonable degree of accuracy, almost all fundamental spectroscopic properties for small molecular systems. The theoretical approach is now properly considered to be of fundamental importance in attaining a high degree of understanding of spectroscopic information. Moreover, it may be also a great help in designing and planning experiments. On the other hand, new and very powerful experimental techniques have been developed. This book combines an advanced teaching standpoint with an emphasis on the interplay between theoretical and experimental molecular spectroscopy. It covers a wide range of topics (such as molecular dynamics and reactivity, conformational analysis, hydrogen bonding and solvent effects, spectroscopy of excited states, complex spectra interpretation and simulation, software development and biochemical applications of molecular spectroscopy) and considers a large variety of molecular spectroscopic techniques, either from an experimental or from a theoretical perspective. (short text) This book combines an advanced teaching standpoint with an emphasis on the interplay between theoretical and experimental molecular spectroscopy. It covers a wide range of topics (such as molecular dynamics and reactivity, conformational analysis, hydrogen bonding and solvent effects, spectroscopy of excited states, complex spectra interpretation and simulation, software development and biochemical applications of molecular spectroscopy) and considers a large variety of molecular spectroscopic techniques either from an experimental or from a theoretical perspective.
PCR Cloning Protocols, Second Edition, updates and expands Bruce White's best-selling PCR Cloning Protocols (1997) with the newest procedures for DNA cloning and mutagenesis. Here the researcher will find readily reproducible methods for all the major aspects of PCR use, including PCR optimization, computer programs for PCR primer design and analysis, and novel variations for cloning genes of special characteristics or origin, with emphasis on long distance PCR and GC-rich template amplification. Also included are both conventional and novel enzyme-free and restriction site-free procedures to clone PCR products into a range of vectors, as well as state-of-the-art protocols to facilitate DNA mutagenesis and recombination, and to clone the challenging uncharacterized DNA flanking a known DNA fragment.
Help your kids explore the wonders of science with over 100 easy and accessible experiments Science in Seconds for Kids: Over 100 Experiments You Can Do in Ten Minutes or Less, 2nd Edition makes learning science with your children fun and practical. Using ingredients and components found mostly in your home or classroom, Science in Seconds for Kids instructs caregivers and educators on how to create dazzling and enlightening experiments from scratch. This book utilizes bright and colorful illustrations and diagrams throughout, making the simple experiments even more accessible. Guide your kids through experiments including: Making rainbows on the floor Popping balloons with light Bending water from a faucet Making lightning in a room Keeping paper dry underwater The experiments will fascinate youngsters of all ages and encourage a love of science and learning that could last a lifetime. Science in Seconds for Kids is perfect for elementary, traditional, and homeschool educators, as well as parents, grandparents, and other caregivers.
Since its invention and subsequent development nearly 20 years ago, po- merase chain reaction (PCR) has been extensively utilized to identify numerous gene probes in vitro and in vivo. However, attempts to generate complete and full-length complementary cDNA libraries were, for the most part, fruitless and remained elusive until the last decade, when simple and rapid methods were developed. With current decoding and potential application of human genome information to genechips, there are urgent needs for identification of functional significance of these decoded gene sequences. Inherent in bringing these app- cations to fruition is the need to generate a complete and full-length cDNA library for potential functional assays of specific gene sequences. Generation of cDNA Libraries: Methods and Protocols serves as a laboratory manual on the evolution of generation of cDNA libraries, covering both ba- ground information and step-by-step practical laboratory recipes for which p- tocols, reagents, operational tips, instrumentation, and other requirements are detailed. The first chapter of the book is an overview of the basics of generating cDNA libraries, which include the following: (a) the definition of a cDNA library, (b) different kinds of cDNA libraries, (c) differences between methods for cDNA library generation using conventional approaches and novel stra- gies, including reverse generation of RNA repertoires from cDNA libraries, and (d) the quality of cDNA libraries.
The effort to sequence the human genome is now moving toward a c- clusion. As all of the protein coding sequences are described, an increasing emphasis will be placed on understanding gene function and regulation. One important aspect of this analysis is the study of how transcription factors re- late transcriptional initiation by RNA polymerase II, which is responsible for transcribing nuclear genes encoding messenger RNAs. The initiation of Class II transcription is dependent upon transcription factors binding to DNA e- ments that include the core or basal promoter elements, proximal promoter elements, and distal enhancer elements. General initiation factors are involved in positioning RNA polymerase II on the core promoter, but the complex - teraction of these proteins and transcriptional activators binding to DNA e- ments outside the core promoter regulate the rate of transcriptional initiation. This initiation process appears to be a crucial step in the modulation of mRNA levels in response to developmental and environmental signals. Transcription Factor Protocols provides step-by-step procedures for key techniques that have been developed to study DNA sequences and the protein factors that regulate the transcription of protein encoding genes. This volume is aimed at providing researchers in the field with the well-detailed protocols that have been the hallmark of previous volumes of the Methods in Molecular (TM) Biology series.
Market: Applied acousticians and microphone users such as engineers, scientists, and technicians. The first single-volume reference to offer complete, up-to-date coverage of the wide-ranging topics related to condenser microphone calibration. Featuring contributions by prominent acousticians, this book provides easy-to-follow calibration methods and step-by-step procedures for operating the various measuring instruments and acoustic devices discussed. It also includes a history of the development of condenser microphones, material never before published.
It is now more than 20 years since the book "Radical Ions" edited by Kaiser and Kevan appeared. It contained aspects regarding generation, identification, spin density determination and reactivity of charged molecules with an odd number of electrons. New classes of reactive ion radicals have been detected and characterised since then, most notably cation radicals of saturated organic compounds. Trapping of electrons has been found to occur not only in frozen glasses but also in organic crystals. The structure and reactions of anion radicals of saturated compounds have been clarified during the last 20 years. We have asked leading experts in the field to write separate chapters about cation radicals, anion radicals and trapped electrons as well as more complex systems of biological or technological interest. More attention is paid to recent studies of the ions of saturated compounds than to the older and previously reviewed work on aromatic ions. In the case of trapped electrons full coverage is out of the question, and focus is on recent efforts to characterise the solvation structure in ordered and disordered systems.
The papers included in this volume were presented at the symposium on "Americium and Curium Chemistry and Technology" at the International Chemical Congress of Pacific Basin Societies in Honolulu, Hawaii, December 16-21, 1984. This symposium commemorated forty years of research on americium and curium. Accordingly, the papers included in this volume begin with historical perspectives on the discovery of americium and curium and the early characterization of their chemical properties, and then cover a wide range of subjects, such as thermodynamic properties, electronic structure, nuclear reactions, analytic chemistry, high pressure phase transitions, and technological aspects. Thus, this volume is a review of the chemistry of americium and curium, and provides a perspective on the current research on these elements forty years after their discovery. The editors would like to thank the participants in this symposium for their contributions. It is a pleasure to acknowledge the assistance of Ms. Barbara Moriguchi in handling the administrative aspects of the symposium and of the production of this volume. April 2, 1985 Norman M. Edelstein Materials and Molecular Research Division Lawrence Berkeley Laboratory University of California Berkeley, California 94720, U.S.A. James D. Navratil Rockwell International Rocky Flats Plant P.O. Box 464 Golden, Colorado 80402-0464, U.S.A. Wallace W. Schulz Rockwell Hanford P.O. Box 800 Richland, Washington 99352, U.S.A.
Did the universe start with a Big Bang? Is light a wave, a particle –
or both? Is a "Theory of Everything" possible?
It is now widely accepted that the extracellular matrix (ECM) is a key determinant of tissue-specific gene expression. Signals provided by ECM are transduced by integrins, a large and growing superfamily of transmembrane heterodimeric cell surface receptors that link the ECM to structural and fu- tional elements within the cell. A wide range of cellular phenotypes have been shown to be regulated by integrins, including growth, differentiation, mig- tion, invasion, angiogenesis, and apoptosis. Furthermore, abnormalities of integrin expression and function have been implicated in the etiology of va- ous pathologic conditions, including cardiovascular disease, inflammatory disorders, and cancer. Thus integrins have emerged as an important class of molecules with wide ranging implications for understanding basic biological processes. In Integrin Protocols we provide a wide-ranging collection of laboratory protocols intended to assist investigators interested in integrins in working productively with these molecules, in studying their expression, and in pot- tially manipulating that expression to define their role(s) in relevant biolo- cal models. Protocols are provided for the analysis of integrin expression both at the RNA and protein levels (Chaps. 2, 5, and 7). Delcommenne and Streuli describe procedures for making rat monoclonal antibodies specific for mouse integrins; Schneller et al. and Arap and Huang describe methods for western blotting of integrins and RT-PCR analysis. Protocols are included that cover the analysis of the functional properties of integrins (Chaps. 1, 3, 4, 8, and 9 through 11). Koivunen et al.
The idea of this NATO school was born during philosophical discussions with Dr Brevard on the present and future of NMR during a night walk under the palm trees in Biskra during a seminar held in this oasis. It was clear for us that the recent progress in the field of NMR, especially inverse spectroscopy and the development of MAS, was opening new perspectives for chemists. We realised also that organometallic and inorganic chemists were not clearly informed about the potentialities of all the new methods. NA TO, with its summer schools, was offering a good opportunity to propose to the chemical community a session where those problems would be largely developped. This School is then the prolongation of the two previous ones: Palermo in 1976 on "the less receptive nuclei" and Stirling in 1982 on "the multinuclear approach to NMR spectroscopy" . It was divided into two sub-sessions: NMR in the liquid state and NMR in the solid state. This is reflected in the book organization. As indicated by the title of this School, we were mainly concerned with the methodological aspects of multinuclear NMR. If many examples are given, they appear only as a support for the understanding of the theory or in explanation of some practical aspects of the different experiments. Each domain is introduced by a lecture which presents selected examples.
By the end of the 1980s only two microtubule-dependent motors, the plus end-directed kinesin and the minus end-directed cytoplasmic dynein, had been identified. At the time, these two motors seemed almost sufficient to explain directional motility events on polar microtubule tracks in the cell. No- theless, shortly after, the tip of the iceberg began to emerge with the identi- cation of proteins containing in their sequences a domain found in kinesin. This domain, called the "motor domain," conferred on these proteins the essential property of moving on microtubules, using the energy derived from ATP hydro- sis. Since then, the identification of new proteins belonging to the kinesin superfamily of microtubule-dependent motors has gone at such a pace that nowadays more than 200 entries with motor domain sequences are deposited in the database. Kinesin family members are found in all eukaryotic org- isms tested. They present a wide range of domain organizations with a motor domain located at different positions in the molecule. Their motility prop- ties are also variable in directionality, velocity, and such other characteristics as bundling activity and processivity. Finally, and most important, they p- ticipate in a multitude of cellular functions. Our understanding of many cel- lar events, such as mitotic spindle assembly and neuronal transport, to cite only two, has progressed substantially in the last few years thanks to the id- tification of these motors.
In the series of International Protoplast Symposia the Symposium of 1987 was held in Wageningen (The Netherlands). Earlier Symposia took place in Jena (DDR) 1963, Brno (CSSR) 1967, Salamanca (Spain) 1971, Nottingham (UK) 1975, Szeged (Hungary) 1979 and Basel (Switzerland) 1983. This 7th International Protoplast Symposium was organized by K.J. Puite (Secretary), J.J.M. Dons (Treasurer), H.J.Huizing and E.J.L. Hotke-Staal (Local Organizers), the first three persons being scientists, respectively, from the Research Institute Ital, the Institute for horticultural plant breeding IVT and the Foundation for agricultural plant breeding SVP at Wageningen. Scientific Advisers of the Symposium were A. J. Kool, M. Koornneef and F.A. Krens. The International Agricultural Centre lAC served as the Symposium location. The Organizing Committee decided that the scientific programme of the Symposium should be mainly focussed on protoplast technology of relevance to plant breeding. Therefore research on microbial protoplasts and on secondary metabolites was not included. About 250 scientists from 27 different countries were welcomed at the meeting. Speakers at Symposium Sessions and authors of Poster contributions were asked to hand over their manuscripts for the Symposium Proceedings already at the meeting, permit ting early publication of the Proceedings. These manuscripts give the state of the art of the protoplast research and illustrate the progress since the last Protoplast Symposium.
Intended for advanced undergraduates and graduate students, this book is a practical guide to the use of probability and statistics in experimental physics. The emphasis is on applications and understanding, on theorems and techniques actually used in research. The text is not a comprehensive text in probability and statistics; proofs are sometimes omitted if they do not contribute to intuition in understanding the theorem. The problems, some with worked solutions, introduce the student to the use of computers; occasional reference is made to routines available in the CERN library, but other systems, such as Maple, can also be used. Topics covered include: basic concepts; definitions; some simple results independent of specific distributions; discrete distributions; the normal and other continuous distributions; generating and characteristic functions; the Monte Carlo method and computer simulations; multi-dimensional distributions; the central limit theorem; inverse probability and confidence belts; estimation methods; curve fitting and likelihood ratios; interpolating functions; fitting data with constraints; robust estimation methods. This second edition introduces a new method for dealing with small samples, such as may arise in search experiments, when the data are of low probability. It also includes a new chapter on queuing problems (including a simple, but useful buffer length example). In addition new sections discuss over- and under-coverage using confidence belts, the extended maximum-likelihood method, the use of confidence belts for discrete distributions, estimation of correlation coefficients, and the effective variance method for fitting y = f(x) when both x and y have measurement errors. A complete Solutions Manual is available.
Considerable effort and time is allocated to introducing cell culture and fermentation technology to undergraduate students in academia, generally through a range of courses in industrial biotechnology and related disciplines. Similarly, a large number of textbooks are available to describe the appli- tions of these technologies in industry. However, there has been a general lack of appreciation of the significant developments in downstream processing and isolation technology, the need for which is largely driven by the stringent re- latory requirements for purity and quality of injectable biopharmaceuticals. This is particularly reflected by the general absence of coverage of this s- ject in many biotechnology and related courses in educational institutions. For a considerable while I have felt that there is increasing need for an introductory text to various aspects of downstream processing, particularly with respect to the needs of the biopharmaceutical and biotechnology ind- try. Although there are numerous texts that cover various aspects of protein purification techniques in isolation, there is a need for a work that covers the broad range of isolation technology in an industrial setting. It is anticipated that Downstream Processing of Proteins: Methods and Protocols will play a small part in filling this gap and thus prove a useful contribution to the field. It is also designed to encourage educational strategists to broaden the coverage of these topics in industrial biotechnology courses by including accounts of this important and rapidly developing element of the industrial process.
Speckle photography is an advanced experimental technique used for quantitatve determination of density, velocity and temperature fields in gas, liquid, and plasma flows. This book presents the most important equations for the diffraction theory of speckle formation and the statistical properties of speckle fields. It also describes experimental set-ups and the equipment needed to implement these methods. Speckle photography methods for automatic data acquisition and processing are considered and examples for their use are given.
If you're not sure what to make of all the claims and
counterclaims, this new book will help cut through the conflicting
reports and contradictory findings.
The two Animal Models in Psychiatry volumes are loosely organized by subject. The first volume contains a number of chapters concerned with schizophrenia, psyc- ses, neuroleptic-induced tardive dyskinesias, and other d- orders that may involve dopamine, such as attention deficit disorder and mania. Also included is a chapter describing a behavioral model for activity-induced anorexia. The second volume deals with affective and anxiety disorders, but also includes chapters on subjects not easily classified as either psychotic, affective, or anxiety-related, such as aggression, mental retardation, and memory disorders. Four chapters on animal models of schizophrenia or psychoses are included in Volume 18 because of the importance of these disorders in psychiatry. Likewise, three chapters in the present v- ume deal with affective disorders, with a fourth chapter on circadian rhythms that also contributes to methods for a- mal models in affective disorders. Following the first four chapters are two chapters dealing with models of anxiety and panic, two chapters on aggression, one on mental retardation, and a final chapter covering memory disorders. Many of the behaviorally-based models of affective disorders involve inducing stress in a- mals, usually on a chronic basis. The first chapter by Anisman, Zalcman, Shanks, and Zacharko describes some of the neurochemical effects that are associated with the chronic application of sensors.
Murray's new handbook on Gene Transfer and Expression Protocols
sets forth both current and new methodologies in a clear, concise,
easy-to-follow manner, following the successful formula of the
classic volumes in Humana's Methods in Molecular Biology series.
Each chapter is devoted to a thorough exposition of a single
technique. An Introduction explains the significance of the
protocol and provides background information. A Materials section
lists all the requirements for the technique discussed. A Methods
section details the procedure in a step-by-step protocol. A Notes
section alerts the reader to pitfalls that may be encountered, as
well as alternatives that may be used for successful completion of
the experiment. Each technique is designed to guarantee optimum
results.
Spark scientific curiosity from a young age with this six-level course through an enquiry-based approach and active learning. Collins International Primary Science fully meets the requirements of the Cambridge Primary Science Curriculum Framework from 2020 and has been carefully developed for a range of international contexts. The course is organised into four main strands: Biology, Chemistry, Physics and Earth and Space and the skills detailed under the 'Thinking and Working Scientifically' strand are introduced and taught in the context of those areas. For each Student's Book at Stages 1 to 6, we offer: A full colour and highly illustrated Student's Book Photo-rich spreads show that science is 'real' and puts it into context Earth and Space content covers the new curriculum framework Thinking and Working Scientifically deepens and enhances the delivery of Science skills Actively learn through practical activities that don't require specialist equipment or labs Scaffolding allows students of varying abilities to work with common content and meet learning objectives Supports Cambridge Global Perspectives (TM) with activities that develop and practise key skills Provides learner support as part of a set of resources for the Cambridge Primary Science curriculum framework (0097) from 2020 This series is endorsed by Cambridge Assessment International Education to support the new curriculum framework 0097 from 2020.
This book discusses the evolution and uses for capillary
electrochromatography as a new dimension to current separation
science. With the emergence of this technique the selection of
available separation mechanisms increases dramatically. The book
also discusses the new horizons in the separation of non-polar
compounds which have been opened as a result of CEC. Over ten
chapters authors cover a wide variety of topics and provide the
reader with necessary theoretical background, description of the
instrumentation, modes of operation and methods of detection and an
overview of the broad variety of applications of capillary
electrochromatography. To view the full contents as a pdf, please click
/inca/publications/misc/621924_contents.pdfhere. |
![]() ![]() You may like...
Renewable Power for Sustainable Growth…
Atif Iqbal, Hasmat Malik, …
Hardcover
R4,535
Discovery Miles 45 350
Power Management for Wearable Electronic…
Dima Kilani, Baker Mohammad, …
Hardcover
R1,521
Discovery Miles 15 210
Signal Processing in Medicine and…
Iyad Obeid, Ivan Selesnick, …
Hardcover
R3,558
Discovery Miles 35 580
Pattern Recognition and Signal Analysis…
Anke Meyer-Baese, Volker J. Schmid
Paperback
Computational Science and Technology…
Rayner Alfred, Hiroyuki Iida, …
Hardcover
R6,903
Discovery Miles 69 030
|